Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Nature of interaction between basic fibroblast growth factor and the antiangiogenic drug 7,7-(Carbonyl-bis[imino-N-methyl-4, 2-pyrrolecarbonylimino[N-methyl-4,2-pyrrole]-carbonylimino] )bis-(1, 3-naphthalene disulfonate).

Biophysical journal | 1998

PNU145156E (7,7-(carbonyl-bis[imino-N-methyl-4, 2-pyrrolecarbonylimino[N-methyl-4,2-pyrrole]-carbonylimino]) -bis-(1, 3-naphthalene disulfonate)) is a naphthalene sulfonic distamycin A derivative that interacts with heparin-binding growth factors. Because PNU145156E inhibits tumor angiogenesis, it was selected for clinical development. Picosecond time-resolved fluorescence emission and anisotropy were used to characterize the binding of PNU145156E to the basic fibroblast growth factor (a protein associated with tumor angiogenesis). A decrease in PNU145156E fluorescence lifetime was observed as a function of human basic fibroblast growth factor (bFGF) concentration. Nonlinear least-squares fitting of the binding isotherm yielded Kd = 145 nM for a single class of binding sites. Time-resolved anisotropy gave Kd = 174 nM. Kd = 150 nM was independently verified by quantitative high-performance affinity chromatography. The displaced volume of the complex, calculated from its rotational correlation time, fitted a sphere of 1:1 stoichiometry. These results account for the formation of a tight yet reversible PNU145156E:bFGF complex. An evaluation of PNU145156E fluorescence lifetimes in various solvents has highlighted the forces involved in stabilizing the complex. These are mostly electrostatic-hydrophobic in nature, with a relatively low contribution from hydrogen bonding. Both polar and nonpolar groups are involved on the protein-binding site within a largely hydrophobic cleft. A potential binding trajectory, based on a combination of these results with site-directed chemical modification and known bFGF x-ray structure, is suggested.

Pubmed ID: 9675169 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


PeproTech (tool)

RRID:SCR_006802

An Antibody supplier

View all literature mentions

Zeiss Sigma VP Scanning Electron Microscope (tool)

RRID:SCR_020928

ZEISS SIGMA VP field emission scanning electron microscope (FE-SEM) for imaging of non-conducting samples. It images of bacteria, cells, plants and organisms. Uses ATLAS software and can be combined with 3View technology from Gatan Inc.

View all literature mentions