Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

PACAP stimulates insulin secretion by PAC1 receptor and ion channels in β-cells.

  • Mengmeng Liu‎ et al.
  • Cellular signalling‎
  • 2019‎

Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) plays a crucial role in the endocrine system. The present study aimed to investigate the effect of PACAP38 on insulin secretion and the underlying mechanism in rat pancreatic β-cells. The insulin secretion results showed that PACAP38 stimulated insulin secretion in a glucose- and dose-dependent manner. The insulinotropic effect was mediated by PAC1 receptor, but not by VPAC1 and VPAC2 receptors. Inhibition of adenylyl cyclase and protein kinase A suppressed PACAP38-augmented insulin secretion. Glucose-regulated insulin secretion is dependent on a series of electrophysiological activities. Current-clamp technology suggested that PACAP38 prolonged action potential duration. Voltage-clamp recordings revealed that PACAP38 blocked voltage-dependent potassium currents, and this effect was reversed by inhibition of PAC1 receptor, adenylyl cyclase, or protein kinase A. Activation of Ca2+ channels by PACAP38 was also observed, which could be antagonized by the PAC1 receptor antagonist. In addition, calcium-imaging analysis indicated that PACAP38 increased intracellular Ca2+ concentration, which was decreased by PAC1 receptor antagonist. These findings demonstrate that PACAP38 stimulates glucose-induced insulin secretion mainly by acting on PAC1 receptor, inhibiting voltage-dependent potassium channels, activating Ca2+ channels and increasing intracellular Ca2+ concentration. Further, PACAP blocks voltage-dependent potassium currents via the adenylyl cyclase/protein kinase A signaling pathway.


Interaction of PACAP with Sonic hedgehog reveals complex regulation of the hedgehog pathway by PKA.

  • Pawel Niewiadomski‎ et al.
  • Cellular signalling‎
  • 2013‎

Sonic hedgehog (Shh) signaling is essential for proliferation of cerebellar granule cell progenitors (cGCPs) and its aberrant activation causes a cerebellar cancer medulloblastoma. Pituitary adenylate cyclase activating polypeptide (PACAP) inhibits Shh-driven proliferation of cGCPs and acts as tumor suppressor in murine medulloblastoma. We show that PACAP blocks canonical Shh signaling by a mechanism that involves activation of protein kinase A (PKA) and inhibition of the translocation of the Shh-dependent transcription factor Gli2 into the primary cilium. PKA is shown to play an essential role in inhibiting gene transcription in the absence of Shh, but global PKA activity levels are found to be a poor predictor of the degree of Shh pathway activation. We propose that the core Shh pathway regulates a small compartmentalized pool of PKA in the vicinity of primary cilia. GPCRs that affect global PKA activity levels, such as the PACAP receptor, cooperate with the canonical Shh signal to regulate Gli protein phosphorylation by PKA. This interaction serves to fine-tune the transcriptional and physiological function of the Shh pathway.


Parathyroid hormone induces adipocyte lipolysis via PKA-mediated phosphorylation of hormone-sensitive lipase.

  • Sara Larsson‎ et al.
  • Cellular signalling‎
  • 2016‎

Parathyroid hormone (PTH) is secreted from the parathyroid glands in response to low plasma calcium levels. Besides its classical actions on bone and kidney, PTH may have other important effects, including metabolic effects, as suggested for instance by increased prevalence of insulin resistance and type 2 diabetes in patients with primary hyperparathyroidism. Moreover, secondary hyperparathyroidism may contribute to the metabolic derangements that characterize states of vitamin D deficiency. PTH has been shown to induce adipose tissue lipolysis, but the details of the lipolytic action of PTH have not been described. Here we used primary mouse adipocytes to show that intact PTH (1-84) as well as the N-terminal fragment (1-37) acutely stimulated lipolysis in a dose-dependent manner, whereas the C-terminal fragment (38-84) was without lipolytic effect. The lipolytic action of PTH was paralleled by phosphorylation of known protein kinase A (PKA) substrates, i.e. hormone-sensitive lipase (HSL) and perilipin. The phosphorylation of HSL in response to PTH occurred at the known PKA sites S563 and S660, but not at the non-PKA site S565. PTH-induced lipolysis, as well as phosphorylation of HSL at S563 and S660, was blocked by both the PKA-inhibitor H89 and the adenylate cyclase inhibitor MDL-12330A, whereas inhibitors of extracellular-regulated kinase (ERK), protein kinase B (PKB), AMP-activated protein kinase (AMPK) and Ca(2+)/calmodulin-dependent protein kinase (CaMK) had little or no effect. Inhibition of phosphodiesterase 4 (PDE4) strongly potentiated the lipolytic action of PTH, whereas inhibition of PDE3 had no effect. Our results show that the lipolytic action of PTH is mediated by the PKA signaling pathway with no or minor contribution of other signaling pathways and, furthermore, that the lipolytic action of PTH is limited by simultaneous activation of PDE4. Knowledge of the signaling pathways involved in the lipolytic action of PTH is important for our understanding of how metabolic derangements develop in states of hyperparathyroidism, including vitamin D deficiency.


PKA-mediated phosphorylation of the beta1-adrenergic receptor promotes Gs/Gi switching.

  • Negin P Martin‎ et al.
  • Cellular signalling‎
  • 2004‎

Recently, it has been shown that PKA-mediated phosphorylation of the beta(2)-adrenergic receptor (beta(2)-AR) by the cyclic AMP-dependent protein kinase (PKA) reduces its affinity for G(s) and increases its affinity for G(i). Here we demonstrate that, like the beta(2)-AR, the beta(1)-AR is also capable of "switching" its coupling from G(s) to G(i) in a PKA-dependent manner. The beta(1)-AR is capable of activating adenylate cyclase via G(s), and can also activate the extracellular-regulated kinases, p44 and p42 (ERK1/2). In transfected CHO cells, the observed beta(1)-AR-mediated activation of ERK is both sensitive to pertussis toxin (PTX), indicating involvement of G(i)/G(o), and to the PKA inhibitor, H-89. beta(1)-ARs with PKA phosphorylation sites mutated to alanines are unable to activate ERK. Mutating these same residues to aspartic acid, mimicking PKA phosphorylation, leads to a decrease in G(s)-stimulated cAMP accumulation and an increase in PTX-sensitive ERK activation. These results strongly support the hypothesis that the beta(1)-AR, like the beta(2)-AR, can undergo PKA-dependent "G(s)/G(i) switching".


Modulation of the leptin-induced white adipose tissue lipolysis by nitric oxide.

  • G Frühbeck‎ et al.
  • Cellular signalling‎
  • 2001‎

The present study tested the hypothesis that nitric oxide (NO) is involved in the leptin-induced stimulation of lipolysis. The effect of intravenous (iv) administration of leptin (10, 100 and 1000 microg/kg body weight) or vehicle on serum NO concentrations and glycerol release from white adipocytes of Wistar rats was examined. One hour after injection, the three leptin doses tested increased serum NO concentrations 15.1%, 23.4% and 60.0%, respectively (P<.001 vs. baseline). The effect of leptin on NO concentrations was significantly dose dependent on linear trend testing (P=.0001). Simple linear regression analysis showed that the lipolytic rate measured was significantly correlated with serum NO concentrations (P=.0025; r=.52). In order to gain further insight into the potential underlying mechanisms, the effect of leptin on lipolysis was studied in the setting of nitric oxide synthase (NOS) inhibition or acute ganglionic blockade. The stimulatory effect of leptin on lipolysis was significantly decreased (P<.05) under NOS inhibition. On the contrary, the leptin-induced lipolysis was unaltered in pharmacologically induced ganglionic blockade. The lack of effect on isoproterenol-, forskolin- and dibutyryl-cyclic AMP-stimulated lipolysis suggests that leptin does not interfere with the signal transduction pathway at the beta-adrenergic receptor, the adenylate cyclase and the protein kinase A levels. These findings suggest that NO is a potential regulator of leptin-induced lipolysis.


Effect of forskolin on bradykinin-induced calcium mobilization in cultured canine tracheal smooth muscle cells.

  • S F Luo‎ et al.
  • Cellular signalling‎
  • 1997‎

The effects of increases in intracellular adenosine 3':5'-cyclic monophosphate (cyclic AMP) on bradykinin (BK)-induced generation of inositol phosphates (IPs) and Ca2+ mobilization were investigated in canine cultured tracheal smooth muscle cells (TSMCs). Pretreatment of TSMCs with either forskolin or dibutyryl cyclic AMP attenuated BK-stimulated responses. The inhibitory effects of these agents produced both a depression of the maximal response and a shift to the right of the concentration-response curves of BK. The water-soluble forskolin analogue L-858051, 7-deacetyl-7 beta-(r-N-methylpiperazino)-butyryl forskolin, significantly attenuated BK-stimulated IPs accumulation, while 1,9-dideoxy forskolin, an inactive forskolin, had little effect on IPs response. Moreover, SQ-22536, 9-(tetrahydro-2-furanyl)-9-H-purin-6-amine, an inhibitor of adenylate cyclase, and both H-89, N-(2-aminoethyl)-5-isoquinolinesulfonamide, and HA-1004, N-(2-guanidinoethyl)-5-isoquinolinesulfonamide, inhibitors of cyclic AMP-dependent protein kinase (PKA), reversed the ability of forskolin to attenuate BK-stimulated IPs accumulation. The KD and Bmax, values of the BK receptor for [3H]BK binding were not significantly changed by forskolin treatment for 30 min and 4 h. The AlF4(-)-induced IPs accumulation was attenuated by forskolin, indicating that G protein(s) are directly activated by AlF4- and uncoupled to phospholipase C by forskolin treatment. These results suggest that activation of cyclic AMP/PKA might inhibit the BK-stimulated PI breakdown and consequently reduce the [Ca2+]i increases or inhibit independently both responses, which is distal to the BK receptor in canine cultured TSMCs.


Dopamine suppresses osteoclast differentiation via cAMP/PKA/CREB pathway.

  • Lufei Wang‎ et al.
  • Cellular signalling‎
  • 2021‎

How the nervous system regulates bone remodeling is an exciting area of emerging research in bone biology. Accumulating evidence suggest that neurotransmitter-mediated inputs from neurons may act directly on osteoclasts. Dopamine is a neurotransmitter that can be released by hypothalamic neurons to regulate bone metabolism through the hypothalamic-pituitary-gonadal axis. Dopamine is also present in sympathetic nerves that penetrate skeletal structures throughout the body. It has been shown that dopamine suppresses osteoclast differentiation via a D2-like receptors (D2R)-dependent manner, but the intracellular secondary signaling pathway has not been elucidated. In this study, we found that cAMP-response element binding protein (CREB) activity responds to dopamine treatment during osteoclastogenesis. Considering the critical role of CREB in osteoclastogenesis, we hypothesize that CREB may be a critical target in dopamine's regulation of osteoclast differentiation. We confirmed that D2R is also present in RAW cells and activated by dopamine. Binding of dopamine to D2R inhibits the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway which ultimately decreases CREB phosphorylation during osteoclastogenesis. This was also associated with diminished expression of osteoclast markers that are downstream of CREB. Pharmacological activation of adenylate cyclase (to increase cAMP production) and PKA reverses the effect of dopamine on CREB activity and osteoclastogenesis. Therefore, we have identified D2R/cAMP/PKA/CREB as a candidate pathway that mediates dopamine's inhibition of osteoclast differentiation. These findings will contribute to our understanding of how the nervous and skeletal systems interact to regulate bone remodeling. This will enable future work toward elucidating the role of the nervous system in bone development, repair, aging, and degenerative disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: