Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 501 papers

Water content, adenylate kinase, and mitochondria drive adenylate balance in dehydrating and imbibing seeds.

  • Marie-Paule Raveneau‎ et al.
  • Journal of experimental botany‎
  • 2017‎

Water and life are inexorably linked, but some organisms are capable of losing almost all cellular water to enter a non-metabolic state of anhydrobiosis. This raises intriguing questions about how energy metabolism is managed during such transitions. Here, we have investigated adenylate metabolism during seed imbibition and drying using intact or fragmented pea (Pisum sativum L.) seeds. AMP was confirmed as the major adenylate stored in dry seeds, and normal adenylate balance was rapidly restored upon rehydration of the tissues. Conversely, re-drying of fully imbibed seeds reversed the balance toward AMP accumulation. The overall analysis, supported by in vitro enzyme mimicking experiments, shows that during tissue dehydration, when oxidative phosphorylation is no longer efficient because of decreasing water content, the ATP metabolic demand is met by adenylate kinase, resulting in accumulation of AMP. During seed imbibition, adenylate balance is rapidly restored from the AMP stock by the concerted action of adenylate kinase and mitochondria. The adenylate balance in orthodox seeds, and probably in other anhydrobiotes, appears to be simply driven by water content throughout the interplay between ATP metabolic demand, adenylate kinase, and oxidative phosphorylation, which requires mitochondria to be energetically efficient from the onset of imbibition.


Correlated inter-domain motions in adenylate kinase.

  • Santiago Esteban-Martín‎ et al.
  • PLoS computational biology‎
  • 2014‎

Correlated inter-domain motions in proteins can mediate fundamental biochemical processes such as signal transduction and allostery. Here we characterize at structural level the inter-domain coupling in a multidomain enzyme, Adenylate Kinase (AK), using computational methods that exploit the shape information encoded in residual dipolar couplings (RDCs) measured under steric alignment by nuclear magnetic resonance (NMR). We find experimental evidence for a multi-state equilibrium distribution along the opening/closing pathway of Adenylate Kinase, previously proposed from computational work, in which inter-domain interactions disfavour states where only the AMP binding domain is closed. In summary, we provide a robust experimental technique for study of allosteric regulation in AK and other enzymes.


Conformational dynamics of adenylate kinase in crystals.

  • Junhyung Kim‎ et al.
  • Structural dynamics (Melville, N.Y.)‎
  • 2024‎

Adenylate kinase is a ubiquitous enzyme in living systems and undergoes dramatic conformational changes during its catalytic cycle. For these reasons, it is widely studied by genetic, biochemical, and biophysical methods, both experimental and theoretical. We have determined the basic crystal structures of three differently liganded states of adenylate kinase from Methanotorrus igneus, a hyperthermophilic organism whose adenylate kinase is a homotrimeric oligomer. The multiple copies of each protomer in the asymmetric unit of the crystal provide a unique opportunity to study the variation in the structure and were further analyzed using advanced crystallographic refinement methods and analysis tools to reveal conformational heterogeneity and, thus, implied dynamic behaviors in the catalytic cycle.


The energy landscape of adenylate kinase during catalysis.

  • S Jordan Kerns‎ et al.
  • Nature structural & molecular biology‎
  • 2015‎

Kinases perform phosphoryl-transfer reactions in milliseconds; without enzymes, these reactions would take about 8,000 years under physiological conditions. Despite extensive studies, a comprehensive understanding of kinase energy landscapes, including both chemical and conformational steps, is lacking. Here we scrutinize the microscopic steps in the catalytic cycle of adenylate kinase, through a combination of NMR measurements during catalysis, pre-steady-state kinetics, molecular-dynamics simulations and crystallography of active complexes. We find that the Mg(2+) cofactor activates two distinct molecular events: phosphoryl transfer (>10(5)-fold) and lid opening (10(3)-fold). In contrast, mutation of an essential active site arginine decelerates phosphoryl transfer 10(3)-fold without substantially affecting lid opening. Our results highlight the importance of the entire energy landscape in catalysis and suggest that adenylate kinases have evolved to activate key processes simultaneously by precise placement of a single, charged and very abundant cofactor in a preorganized active site.


Coupled ATPase-adenylate kinase activity in ABC transporters.

  • Hundeep Kaur‎ et al.
  • Nature communications‎
  • 2016‎

ATP-binding cassette (ABC) transporters, a superfamily of integral membrane proteins, catalyse the translocation of substrates across the cellular membrane by ATP hydrolysis. Here we demonstrate by nucleotide turnover and binding studies based on 31P solid-state NMR spectroscopy that the ABC exporter and lipid A flippase MsbA can couple ATP hydrolysis to an adenylate kinase activity, where ADP is converted into AMP and ATP. Single-point mutations reveal that both ATPase and adenylate kinase mechanisms are associated with the same conserved motifs of the nucleotide-binding domain. Based on these results, we propose a model for the coupled ATPase-adenylate kinase mechanism, involving the canonical and an additional nucleotide-binding site. We extend these findings to other prokaryotic ABC exporters, namely LmrA and TmrAB, suggesting that the coupled activities are a general feature of ABC exporters.


RNA mimicry by the fap7 adenylate kinase in ribosome biogenesis.

  • Jérôme Loc'h‎ et al.
  • PLoS biology‎
  • 2014‎

During biogenesis of the 40S and 60S ribosomal subunits, the pre-40S particles are exported to the cytoplasm prior to final cleavage of the 20S pre-rRNA to mature 18S rRNA. Amongst the factors involved in this maturation step, Fap7 is unusual, as it both interacts with ribosomal protein Rps14 and harbors adenylate kinase activity, a function not usually associated with ribonucleoprotein assembly. Human hFap7 also regulates Cajal body assembly and cell cycle progression via the p53-MDM2 pathway. This work presents the functional and structural characterization of the Fap7-Rps14 complex. We report that Fap7 association blocks the RNA binding surface of Rps14 and, conversely, Rps14 binding inhibits adenylate kinase activity of Fap7. In addition, the affinity of Fap7 for Rps14 is higher with bound ADP, whereas ATP hydrolysis dissociates the complex. These results suggest that Fap7 chaperones Rps14 assembly into pre-40S particles via RNA mimicry in an ATP-dependent manner. Incorporation of Rps14 by Fap7 leads to a structural rearrangement of the platform domain necessary for the pre-rRNA to acquire a cleavage competent conformation.


Adenylate kinase 2 (AK2) promotes cell proliferation in insect development.

  • Ru-Ping Chen‎ et al.
  • BMC molecular biology‎
  • 2012‎

Adenylate kinase 2 (AK2) is a phosphotransferase that catalyzes the reversible reaction 2ADP(GDP) ↔ ATP(GTP) + AMP and influences cellular energy homeostasis. However, the role of AK2 in regulating cell proliferation remains unclear because AK2 has been reported to be involved in either cell proliferation or cell apoptosis in different cell types of various organisms.


Linkage between Fitness of Yeast Cells and Adenylate Kinase Catalysis.

  • Hasan Tükenmez‎ et al.
  • PloS one‎
  • 2016‎

Enzymes have evolved with highly specific values of their catalytic parameters kcat and KM. This poses fundamental biological questions about the selection pressures responsible for evolutionary tuning of these parameters. Here we are address these questions for the enzyme adenylate kinase (Adk) in eukaryotic yeast cells. A plasmid shuffling system was developed to allow quantification of relative fitness (calculated from growth rates) of yeast in response to perturbations of Adk activity introduced through mutations. Biophysical characterization verified that all variants studied were properly folded and that the mutations did not cause any substantial differences to thermal stability. We found that cytosolic Adk is essential for yeast viability in our strain background and that viability could not be restored with a catalytically dead, although properly folded Adk variant. There exist a massive overcapacity of Adk catalytic activity and only 12% of the wild type kcat is required for optimal growth at the stress condition 20°C. In summary, the approach developed here has provided new insights into the evolutionary tuning of kcat for Adk in a eukaryotic organism. The developed methodology may also become useful for uncovering new aspects of active site dynamics and also in enzyme design since a large library of enzyme variants can be screened rapidly by identifying viable colonies.


Role of Repeated Conformational Transitions in Substrate Binding of Adenylate Kinase.

  • Jiajun Lu‎ et al.
  • The journal of physical chemistry. B‎
  • 2022‎

The catalytic cycle of the enzyme adenylate kinase involves large conformational motions between open and closed states. A previous single-molecule experiment showed that substrate binding tends to accelerate both the opening and the closing rates and that a single turnover event often involves multiple rounds of conformational switching. In this work, we showed that the repeated conformational transitions of adenylate kinase are essential for the relaxation of incorrectly bound substrates into the catalytically competent conformation by combining all-atom and coarse-grained molecular simulations. In addition, free energy calculations based on all-atom and coarse-grained models demonstrated that the enzyme with incorrectly bound substrates has much a lower free energy barrier for domain opening compared to that with the correct substrate conformation, which may explain the the acceleration of the domain opening rate by substrate binding. The results of this work provide mechanistic understanding to previous experimental observations and shed light onto the interplay between conformational dynamics and enzyme catalysis.


Prognostic and therapeutic potential of Adenylate kinase 2 in lung adenocarcinoma.

  • Huibin Liu‎ et al.
  • Scientific reports‎
  • 2019‎

Adenylate kinase 2 (AK2), an isoenzyme of the AK family, may have momentous extra-mitochondrial functions, especially in tumourigenesis in addition to the well-known control of energy metabolism. In this study, we provided the first evidence that AK2 is overexpressed in lung adenocarcinoma. The positive expression of AK2 is associated with tumor progression, and poor survival in patients with pulmonary adenocarcinoma. Knockdown of AK2 could suppress proliferation, migration, and invasion as well as induce apoptosis and autophagy in human lung adenocarcinoma cells. Remarkably, silencing AK2 exerted the greater tumor suppression roles when combined with hydroxychloroquine, an effective autophagy inhibitor, in vitro and in xenografts mouse models. Our data have probably provided preclinical proof that systematic inhibition of AK2 and autophagy could be therapeutically effective on lung cancer.


Protein folding and function: the N-terminal fragment in adenylate kinase.

  • S Kumar‎ et al.
  • Biophysical journal‎
  • 2001‎

Three-dimensional protein folds range from simple to highly complex architectures. In complex folds, some building block fragments are more important for correct protein folding than others. Such fragments are typically buried in the protein core and mediate interactions between other fragments. Here we present an automated, surface area-based algorithm that is able to indicate which, among all local elements of the structure, is critical for the formation of the native fold, and apply it to structurally well-characterized proteins. In particular, we focus on adenylate kinase. The fragment containing the phosphate binding, P-loop (the "giant anion hole") flanked by a beta-strand and an alpha-helix near the N-terminus, is identified as a critical building block. This building block shows a high degree of sequence and structural conservation in all adenylate kinases. The results of our molecular dynamics simulations are consistent with this identification. In its absence, the protein flips to a stable, non-native state. In this misfolded conformation, the other local elements of the structure are in their native-like conformations; however, their association is non-native. Furthermore, this element is critically important for the function of the enzyme, coupling folding, and function.


Minimum free energy path of ligand-induced transition in adenylate kinase.

  • Yasuhiro Matsunaga‎ et al.
  • PLoS computational biology‎
  • 2012‎

Large-scale conformational changes in proteins involve barrier-crossing transitions on the complex free energy surfaces of high-dimensional space. Such rare events cannot be efficiently captured by conventional molecular dynamics simulations. Here we show that, by combining the on-the-fly string method and the multi-state Bennett acceptance ratio (MBAR) method, the free energy profile of a conformational transition pathway in Escherichia coli adenylate kinase can be characterized in a high-dimensional space. The minimum free energy paths of the conformational transitions in adenylate kinase were explored by the on-the-fly string method in 20-dimensional space spanned by the 20 largest-amplitude principal modes, and the free energy and various kinds of average physical quantities along the pathways were successfully evaluated by the MBAR method. The influence of ligand binding on the pathways was characterized in terms of rigid-body motions of the lid-shaped ATP-binding domain (LID) and the AMP-binding (AMPbd) domains. It was found that the LID domain was able to partially close without the ligand, while the closure of the AMPbd domain required the ligand binding. The transition state ensemble of the ligand bound form was identified as those structures characterized by highly specific binding of the ligand to the AMPbd domain, and was validated by unrestrained MD simulations. It was also found that complete closure of the LID domain required the dehydration of solvents around the P-loop. These findings suggest that the interplay of the two different types of domain motion is an essential feature in the conformational transition of the enzyme.


Tracking the ATP-binding response in adenylate kinase in real time.

  • Fredrik Orädd‎ et al.
  • Science advances‎
  • 2021‎

The biological function of proteins is critically dependent on dynamics inherent to the native structure. Such structural dynamics obey a predefined order and temporal timing to execute the specific reaction. Determination of the cooperativity of key structural rearrangements requires monitoring protein reactions in real time. In this work, we used time-resolved x-ray solution scattering (TR-XSS) to visualize structural changes in the Escherichia coli adenylate kinase (AdK) enzyme upon laser-induced activation of a protected ATP substrate. A 4.3-ms transient intermediate showed partial closing of both the ATP- and AMP-binding domains, which indicates a cooperative closing mechanism. The ATP-binding domain also showed local unfolding and breaking of an Arg131-Asp146 salt bridge. Nuclear magnetic resonance spectroscopy data identified similar unfolding in an Arg131Ala AdK mutant, which refolded in a closed, substrate-binding conformation. The observed structural dynamics agree with a “cracking mechanism” proposed to underlie global structural transformation, such as allostery, in proteins.


Adenylate kinase AK2 isoform integral in embryo and adult heart homeostasis.

  • Song Zhang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Adenylate kinase2 (AK2) catalyzes trans-compartmental nucleotide exchange, but the functional implications of this mitochondrial intermembrane isoform is only partially understood. Here, transgenic AK2-/- null homozygosity was lethal early in embryo, indicating a mandatory role for intact AK2 in utero development. In the adult, conditional organ-specific ablation of AK2 precipitated abrupt heart failure with Krebs cycle and glycolytic metabolite buildup, suggesting a vital contribution to energy demanding cardiac performance. Depressed pump function recovered to pre-deletion levels overtime, suggestive of an adaptive response. Compensatory upregulation of phosphotransferase AK1, AK3, AK4 isozymes, creatine kinase isoforms, and hexokinase, along with remodeling of cell cycle/growth genes and mitochondrial ultrastructure supported organ rescue. Taken together, the requirement of AK2 in early embryonic stages, and the immediate collapse of heart performance in the AK2-deficient postnatal state underscore a primordial function of the AK2 isoform. Unsalvageable in embryo, loss of AK2 in the adult heart was recoverable, underscoring an AK2-integrated bioenergetics system with innate plasticity to maintain homeostasis on demand.


An expanded adenylate kinase gene family in the protozoan parasite Trypanosoma cruzi.

  • Leon A Bouvier‎ et al.
  • Biochimica et biophysica acta‎
  • 2006‎

Adenylate kinases supply energy routes in cellular energetic homeostasis. In this work, we identified and characterized the adenylate kinase activity in extracts from the flagellated parasite Trypanosoma cruzi, the causative agent of Chagas' disease. Adenylate kinase activity was detected in different subcellular fractions and the cytosolic isoform was biochemically characterized. Cytosolic adenylate kinase specific activity increases continuously during the epimastigote growth and is down-regulated when other soluble phosphotransferase, arginine kinase, is overexpressed. Six different genes of adenylate kinase isoforms were identified and the mRNA expression was confirmed by RT-PCR and Northern Blot. Three open reading frames coding for different enzyme isoforms named TzADK1, TzADK2 and TzADK5 were cloned and functionally expressed in E. coli. This work reports an unusually large number of genes of adenylate kinases and suggests a coordinated regulation of phosphotransferase-mediated ATP regenerating pathways in the unicellular parasite Trypanosoma cruzi.


Exploring Conformational Change of Adenylate Kinase by Replica Exchange Molecular Dynamic Simulation.

  • Jinan Wang‎ et al.
  • Biophysical journal‎
  • 2020‎

Replica exchange molecular dynamics (REMD) simulation is a popular enhanced sampling method that is widely used for exploring the atomic mechanism of protein conformational change. However, the requirement of huge computational resources for REMD, especially with the explicit solvent model, largely limits its application. In this study, the availability and efficiency of a variant of velocity-scaling REMD (vsREMD) was assessed with adenylate kinase as an example. Although vsREMD achieved results consistent with those from conventional REMD and experimental studies, the number of replicas required for vsREMD (30) was much less than that for conventional REMD (80) to achieve a similar acceptance rate (∼0.2), demonstrating high efficiency of vsREMD to characterize the protein conformational change and associated free-energy profile. Thus, vsREMD is a highly efficient approach for studying the large-scale conformational change of protein systems.


The role of the C8 proton of ATP in the catalysis of shikimate kinase and adenylate kinase.

  • Colin P Kenyon‎ et al.
  • BMC biochemistry‎
  • 2012‎

It has been demonstrated that the adenyl moiety of ATP plays a direct role in the regulation of ATP binding and/or phosphoryl transfer within a range of kinase and synthetase enzymes. The role of the C8-H of ATP in the binding and/or phosphoryl transfer on the enzyme activity of a number of kinase and synthetase enzymes has been elucidated. The intrinsic catalysis rate mediated by each kinase enzyme is complex, yielding apparent KM values ranging from less than 0.4 μM to more than 1 mM for ATP in the various kinases. Using a combination of ATP deuterated at the C8 position (C8D-ATP) as a molecular probe with site directed mutagenesis (SDM) of conserved amino acid residues in shikimate kinase and adenylate kinase active sites, we have elucidated a mechanism by which the ATP C8-H is induced to be labile in the broader kinase family. We have demonstrated the direct role of the C8-H in the rate of ATP consumption, and the direct role played by conserved Thr residues interacting with the C8-H. The mechanism by which the vast range in KM might be achieved is also suggested by these findings.


Molecular and functional characterization of a Trypanosoma cruzi nuclear adenylate kinase isoform.

  • María de los Milagros Cámara‎ et al.
  • PLoS neglected tropical diseases‎
  • 2013‎

Trypanosoma cruzi, the etiological agent of Chagas' disease, is an early divergent eukaryote in which control of gene expression relies mainly in post-transcriptional mechanisms. Transcription levels are globally up and down regulated during the transition between proliferating and non-proliferating life-cycle stages. In this work we characterized a nuclear adenylate kinase isoform (TcADKn) that is involved in ribosome biogenesis. Nuclear adenylate kinases have been recently described in a few organisms, being all related to RNA metabolism. Depending on active transcription and translation, TcADKn localizes in the nucleolus or the cytoplasm. A non-canonical nuclear localization signal was mapped towards the N-terminal of the protein, being the phosphate-binding loop essential for its localization. In addition, TcADKn nuclear exportation depends on the nuclear exportation adapter CRM1. TcADKn nuclear shuttling is governed by nutrient availability, oxidative stress and by the equivalent in T. cruzi of the mammalian TOR (Target of Rapamycin) pathway. One of the biological functions of TcADKn is ribosomal 18S RNA processing by direct interaction with ribosomal protein TcRps14. Finally, TcADKn expression is regulated by its 3' UTR mRNA. Depending on extracellular conditions, cells modulate protein translation rates regulating ribosome biogenesis and nuclear adenylate kinases are probably key components in these processes.


The Effect of Heterozygous Mutation of Adenylate Kinase 2 Gene on Neutrophil Differentiation.

  • Taigo Horiguchi‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Mitochondrial ATP production plays an important role in most cellular activities, including growth and differentiation. Previously we reported that Adenylate kinase 2 (AK2) is the main ADP supplier in the mitochondrial intermembrane space in hematopoietic cells, especially in the bone marrow. AK2 is crucial for the production of neutrophils and T cells, and its deficiency causes reticular dysgenesis. However, the relationship between ADP supply by AK2 and neutrophil differentiation remains unclear. In this study, we used CRISPR/Cas9 technology to establish two heterozygous AK2 knock-out HL-60 clones as models for reticular dysgenesis. Their AK2 activities were about half that in the wild-type (WT). Furthermore, neutrophil differentiation was impaired in one of the clones. In silico analysis predicted that the obtained mutations might cause a structural change in AK2. Time course microarray analysis of the WT and mutants revealed that similar gene clusters responded to all-trans retinoic acid treatment, but their expression was lower in the mutants than in WT. Application of fructose partially restored neutrophil differentiation in the heterozygous knock-out HL-60 clone after all-trans retinoic acid treatment. Collectively, our study suggests that the mutation of N-terminal region in AK2 might play a role in AK2-dependent neutrophil differentiation and fructose could be used to treat AK2 deficiency.


Metabolomic analysis of human oral cancer cells with adenylate kinase 2 or phosphorylate glycerol kinase 1 inhibition.

  • Eoon Hye Ji‎ et al.
  • Journal of Cancer‎
  • 2017‎

The purpose of this study was to use liquid chromatography-mass spectrometry (LC-MS) with XCMS for a quantitative metabolomic analysis of UM1 and UM2 oral cancer cells after knockdown of metabolic enzyme adenylate kinase 2 (AK2) or phosphorylate glycerol kinase 1 (PGK1). UM1 and UM2 cells were initially transfected with AK2 siRNA, PGK1 siRNA or scrambled control siRNA, and then analyzed with LC-MS for metabolic profiles. XCMS analysis of the untargeted metabolomics data revealed a total of 3200-4700 metabolite features from the transfected UM1 or UM2 cancer cells and 369-585 significantly changed metabolites due to AK2 or PGK1 suppression. In addition, cluster analysis showed that a common group of metabolites were altered by AK2 knockdown or by PGK1 knockdown between the UM1 and UM2 cells. However, the set of significantly changed metabolites due to AK2 knockdown was found to be distinct from those significantly changed by PGK1 knockdown. Our study has demonstrated that LC-MS with XCMS is an efficient tool for metabolomic analysis of oral cancer cells, and knockdown of different genes results in distinct changes in metabolic phenotypes in oral cancer cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: