Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 115 papers

Human IgG subclasses against enterovirus Type 71: neutralization versus antibody dependent enhancement of infection.

  • Rui-Yuan Cao‎ et al.
  • PloS one‎
  • 2013‎

The emerging human enterovirus 71 (EV71) represents a growing threat to public health, and no vaccine or specific antiviral is currently available. Human intravenous immunoglobulin (IVIG) is clinical used in treating severe EV71 infections. However, the discovery of antibody dependent enhancement (ADE) of EV71 infection illustrates the complex roles of antibody in controlling EV71 infection. In this study, to identify the distinct role of each IgG subclass on neutralization and enhancement of EV71 infection, different lots of pharmaceutical IVIG preparations manufactured from Chinese donors were used for IgG subclass fractionation by pH gradient elution with the protein A-conjugated affinity column. The neutralization and ADE capacities on EV71 infection of each purified IgG subclass were then assayed, respectively. The neutralizing activity of human IVIG is mainly mediated by IgG1 subclass and to less extent by IgG2 subclass. Interestingly, IgG3 fraction did not have neutralizing activity but enhanced EV71 infection in vitro. These results revealed the different roles of human IgG subclasses on EV71 infection, which is of critical importance for the rational design of immunotherapy and vaccines against severe EV71 diseases.


p38(MAPK)/p53-Mediated Bax induction contributes to neurons degeneration in rotenone-induced cellular and rat models of Parkinson's disease.

  • Feng Wu‎ et al.
  • Neurochemistry international‎
  • 2013‎

Rotenone is an environmental neurotoxin that induces degeneration of dopaminergic (DA) neurons in substantia nigra pars compacta (SNpc), which ultimately results in parkinsonism, but the molecular mechanisms of selective degeneration of nigral DA neurons are not fully understood. In the present study, we investigated the induction of p38(MAPK)/p53 and Bax in SNpc of Lewis rats after chronic treatment with rotenone and the contribution of Bax to rotenone-induced apoptotic commitment of differentiated PC12 cells. Lewis rats were subcutaneously treated with rotenone (1.5mg/kg) twice a day for 50days and the loss of tyrosine hydroxylase (THase), motor function impairment, and expression of p38(MAPK), P-p38(MAPK), p53, and Bax were assessed. After differentiated PC cells were treated with rotenone (500nM) for 6-36h, protein levels of p38(MAPK) and P-p38(MAPK), p53 nuclear translocation, Bax induction and cell death were measured. The results showed that rotenone administration significantly reduced motor activity and caused a loss of THase immunoreactivity in SNpc of Lewis rats. The degeneration of nigral DA neurons was accompanied by the increases in p38(MAPK), P-p38(MAPK), p53, and Bax protein levels. In cultured PC12 cells, rotenone also induced an upregulation of p38(MAPK), P-p38(MAPK), p53 and Bax. Pharmacological inhibition of p38(MAPK) with SB203580 (25μM) blunted rotenone-induced cell apoptosis. Treatment with SB203580 prevented the p53 nuclear translocation and upregulation of Bax. Inhibition of p53 with pifthrin-alpha or Bax with siRNAs significantly reduced rotenone-induced Bax induction and apoptotic cell death. These results suggest that the p38(MAPK)/p53-dependent induction of Bax contributes to rotenone's neurotoxicity in PD models.


Cobrotoxin from Naja naja atra Venom Ameliorates Adriamycin Nephropathy in Rats.

  • Shu-Zhi Wang‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2015‎

Chronic kidney disease (CKD) becomes a global health problem with high morbidity and mortality. Adriamycin- (ADR-) induced rodent chronic nephropathy is a classic experimental model of human minimal lesion nephrotic syndrome. The present study investigated the effect of cobrotoxin (CTX) on ADR-induced nephropathy. Rats were given 6 mg/kg ADR once through the tail vein to replicate ADR nephropathy model. CTX was administered to rats daily by placing a fast dissolving CTX membrane strip under the tongue starting from 5 days prior to ADR administration until the end of experiment. The results showed that CTX ameliorated the symptoms of ADR nephropathy syndrome with reduced body weight loss, proteinuria, hypoalbuminemia, dyslipidemia, serum electrolyte imbalance, oxidative stress, renal function abnormities, and kidney pathological lesions. Anti-inflammatory cytokine IL-10 expression was elevated after CTX administration in ADR nephropathy model. CTX inhibited the phosphorylation of IκB-α and NF-κB p65 nuclear translocation. Meanwhile, CTX upregulated the protein level of podocyte-specific nephrin and downregulated the level of fibrosis-related TGF-β. These findings suggest that CTX may be a potential drug for chronic kidney diseases.


Impact of Donation Mode on the Proportion and Function of T Lymphocytes in the Liver.

  • Emmanuel Xystrakis‎ et al.
  • PloS one‎
  • 2015‎

Liver T-cells respond to the inflammatory insult generated during organ procurement and contribute to the injury following reperfusion. The mode of liver donation alters various metabolic and inflammatory pathways but the way it affects intrahepatic T-cells is still unclear.


Crystallization and crystallographic studies of kallistatin.

  • Fang Lin‎ et al.
  • Acta crystallographica. Section F, Structural biology communications‎
  • 2015‎

Kallistatin is a serine protease inhibitor (serpin) which specifically inhibits human tissue kallikrein; however, its inhibitory activity is inhibited by heparin. In order to elucidate the underlying mechanism, recombinant human kallistatin was prepared in Escherichia coli and the protein was crystallized by the sitting-drop vapour-diffusion method. X-ray diffraction data were collected to 1.9 Å resolution. The crystals were found to belong to space group P61, with unit-cell parameters a = 113.51, b = 113.51, c = 76.17 Å. Initial analysis indicated that the crystallized kallistatin was in a relaxed conformation, with its reactive-centre loop inserted in the central β-sheet.


Essential roles of G{alpha}12/13 signaling in distinct cell behaviors driving zebrafish convergence and extension gastrulation movements.

  • Fang Lin‎ et al.
  • The Journal of cell biology‎
  • 2005‎

Galpha(12/13) have been implicated in numerous cellular processes, however, their roles in vertebrate gastrulation are largely unknown. Here, we show that during zebrafish gastrulation, suppression of both Galpha(12) and Galpha(13) signaling by overexpressing dominant negative proteins and application of antisense morpholino-modified oligonucleotide translation interference disrupted convergence and extension without changing embryonic patterning. Analyses of mesodermal cell behaviors revealed that Galpha(12/13) are required for cell elongation and efficient dorsalward migration during convergence independent of noncanonical Wnt signaling. Furthermore, Galpha(12/13) function cell-autonomously to mediate mediolateral cell elongation underlying intercalation during notochord extension, likely acting in parallel to noncanonical Wnt signaling. These findings provide the first evidence that Galpha(12) and Galpha(13) have overlapping and essential roles in distinct cell behaviors that drive vertebrate gastrulation.


Enhanced expression and phosphorylation of Sirt7 activates smad2 and ERK signaling and promotes the cardiac fibrosis differentiation upon angiotensin-II stimulation.

  • Haichen Wang‎ et al.
  • PloS one‎
  • 2017‎

Cardiac fibroblasts (CFs) phenotypic conversion to myofibroblasts (MFs) represents a crucial event in cardiac fibrosis that leads to impaired cardiac function. However, regulation of this phenotypic transformation remains unclear. Here, we showed that sirtuin-7 (Sirt7) plays an important role in the regulation of MFs differentiation. Sirt7 expression and phosphorylation were upregulated in CFs upon angiotensin-II (Ang-II) stimulation. Sirt7 depletion by siRNA in CFs resulted in decreased cell proliferation and extracellular matrix (ECM) deposition. Further, examination of Sirt7-depleted CFs demonstrated significantly lower expression of α-smooth muscle actin (α-SMA), the classical marker of MFs differentiation, and decreased formation of focal adhesions. Moreover, overexpression of Sirt7 increased α-SMA expression in Ang-II treated CFs and exacerbated Ang-II-induced MFs differentiation. Moreover, Sirt7 depletion could largely reverse Ang-II induced increase of nuclear translocalization and activity of smad2 and extracellular regulated kinases (ERK) in CFs. Importantly, the increased differentiation of CFs to MFs was also abolished by smad2 siRNA or U0126. Our findings reveal a novel role of Sirt7 and its phosphorylation in the phenotypic conversion of CFs to MFs and might lead to the development of new therapeutic and prognostic tools for cardiac fibrosis.


Lpar2b Controls Lateral Line Tissue Size by Regulating Yap1 Activity in Zebrafish.

  • Xueqian Wang‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2018‎

LPA signaling plays important roles during cell migration and proliferation in normal and pathological conditions. However, its role during sensory organ development remains unknown. Here we show a LPA receptor Lpar2b is expressed in the posterior lateral line primordium (pLLP) and mechanosensory organs called neuromasts (NMs) in zebrafish embryos. Lpar2b loss-of-function significantly reduces the number of NMs and hair cells in the posterior lateral line (pLL). Further analysis reveals that Lpar2b regulates the patterning and tissue size of the pLLP. Interestingly, we show that knocking down a Hippo effector Yap1 phenocopies the result of Lpar2b depletion, and Lpar2b regulates the phosphorylation and activity of Yap1 in the pLLP. Importantly, a phosphorylation-resistant Yap1 rescues pLLP size and NM number in Lpar2b-depleted embryos. Our results indicate Lpar2b controls primordium size and NM number by regulating Yap1 activity in the lateral line system.


miR-423-5p serves as a diagnostic indicator and inhibits the proliferation and invasion of ovarian cancer.

  • Xuebiao Tang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2018‎

MicroRNA (miR)-423-5p is a potential target for the diagnosis and therapy of heart failure and cancer. The present study aimed to investigate the expression and role of miR-423-5p in ovarian cancer. miR-423-5p expression in ovarian tissues and plasma collected from ovarian cancer patients and healthy volunteers was analyzed by polymerase chain reaction analysis. In addition, a cell proliferation assay, clonogenic assay and Matrigel-based assay were performed to evaluate the role of miR-423-5p in ovarian cancer cells. The results demonstrated that miR-423-5p was downregulated in ovarian cancer tissues and plasma from ovarian cancer patients, compared with healthy individuals. Of note, miR-423-5p expression in ovarian tissues and plasma was demonstrated to be inversely correlated with ovarian cancer progression. Transfection with miR-423-5p efficiently increased miR-423-5p expression in A2780-s and A2780-cp cells, which had low miR-423-5p expression. Ectopic overexpression of miR-423-5p reduced cell proliferation, colony formation and invasion of ovarian cancer cells. In conclusion, the present study indicated that miR-423-5p may serve as a diagnostic indicator and functions as a tumor suppressor in ovarian cancer.


Cathepsin L-mediated resistance of paclitaxel and cisplatin is mediated by distinct regulatory mechanisms.

  • Yifan Zhao‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2019‎

Cathepsin L (CTSL) is a cysteine protease known to have important roles in regulating cancer cellular resistance to chemotherapy. However mechanism underlying which regulates CTSL-mediated drug resistance remain largely unknown.


A predictive model for non-completion of an intensive specialist obesity service in a public hospital: a case-control study.

  • Evan Atlantis‎ et al.
  • BMC health services research‎
  • 2019‎

Despite the growing evidence base supporting intensive lifestyle and medical treatments for severe obesity, patient engagement in specialist obesity services is difficult to achieve and poorly understood. To address this knowledge gap, we aimed to develop a model for predicting non-completion of a specialist multidisciplinary service for clinically severe obesity, termed the Metabolic Rehabilitation Programme (MRP).


DC - SIGNR by influencing the lncRNA HNRNPKP2 upregulates the expression of CXCR4 in gastric cancer liver metastasis.

  • Yu Zhang‎ et al.
  • Molecular cancer‎
  • 2017‎

Profiling evidences of selectin demonstrate that they play an crucial role in cancer progression and metastasis. However, DC-SIGNR as a family member of selectin participates in gastric cancer liver metastasis remains unknown.


Low expression of ACLY associates with favorable prognosis in acute myeloid leukemia.

  • Jinghan Wang‎ et al.
  • Journal of translational medicine‎
  • 2019‎

Aberrant metabolism is a hallmark of cancer cells. Recently, ATP citrate-lyase (ACLY) expression was demonstrated as an independent predictor of clinical outcome in solid tumors. However, no systematic study was conducted to explore the prognostic impact of ACLY on acute myeloid leukemia (AML).


Direct administration of mesenchymal stem cell-derived mitochondria improves cardiac function after infarction via ameliorating endothelial senescence.

  • Xiaoting Liang‎ et al.
  • Bioengineering & translational medicine‎
  • 2023‎

Mitochondrial dysfunction is considered to be a key contributor to the development of heart failure. Replacing injured mitochondria with healthy mitochondria to restore mitochondrial bioenergy in myocardium holds great promise for cardioprotection after infarction. This study aimed to investigate whether direct transplantation of exogenous mitochondria derived from mesenchymal stem cells (MSC-mt) is beneficial and superior in protecting cardiac function in a mouse model of myocardial infarction (MI) compared to mitochondria derived from skin fibroblast (FB-mt) and to explore the underlying mechanisms from their effects on the endothelial cells. The isolated MSC-mt presented intact mitochondrial morphology and activity, as determined by electron microscopy, JC-1 mitochondrial membrane potential assay, and seahorse assay. Direct injection of MSC-mt into the peri-infarct region in a mouse MI model enhanced blood vessel density, inhibited cardiac remodeling and apoptosis, thus improving heart function compared with FB-mt group. The injected MSC-mt can be tracked in the endothelial cells. In vitro, the fluorescence signal of MSC-mt can be detected in human umbilical vein endothelial cells (HUVECs) by confocal microscopy and flow cytometry after coculture. Compared to FB-mt, MSC-mt more effectively protected the HUVECs from oxidative stress-induced apoptosis and reduced mitochondrial production of reactive oxygen species. MSC-mt presented superior capacity in inducing tube formation, enhancing SCF secretion, ATP content and cell proliferation in HUVECs compared to FB-mt. Mechanistically, MSC-mt administration alleviated oxidative stress-induced endothelial senescence via activation of ERK pathway. These findings suggest that using MSCs as sources of mitochondria is feasible and that proangiogenesis could be the mechanism by which MSC-mt transplantation attenuates MI. MSC-mt transplantation might serve as a new therapeutic strategy for treating MI.


TIGAR plays neuroprotective roles in KA-induced excitotoxicity through reducing neuroinflammation and improving mitochondrial function.

  • Si-Si Huang‎ et al.
  • Neurochemistry international‎
  • 2022‎

Excitotoxicity refers to the ability of excessive extracellular excitatory amino acids to damage neurons via receptor activation. It is a crucial pathogenetic process in neurodegenerative diseases. TP53 is confirmed to be involved in excitotoxicity. It is demonstrated that TP53 induced glycolysis and apoptotic regulator (TIGAR)-regulated metabolic pathway can protect against neuronal injury. However, the role of TIGAR in excitotoxicity and specific mechanisms is still unknown. In this study, an in vivo excitotoxicity model was constructed via stereotypical kainic acid (KA) injection into the striatum of mice. KA reduced TIGAR expression levels, neuroinflammatory responses and mitochondrial dysfunction. TIGAR overexpression could reverse KA-induced neuronal injury by reducing neuroinflammation and improving mitochondrial function, thereby exerting neuroprotective effects. Therefore, this study could provide a potential therapeutic target for neurodegenerative diseases.


Fibronectin and Integrin α5 play overlapping and independent roles in regulating the development of pharyngeal endoderm and cartilage.

  • Yuanyuan Gao‎ et al.
  • Developmental biology‎
  • 2022‎

Craniofacial skeletal elements are derived from cranial neural crest cells (CNCCs), which migrate along discrete paths and populate distinct pharyngeal arches, structures that are separated by the neighboring endodermal pouches (EPs). Interactions between the CNCCs and the endoderm are critical for proper craniofacial development. In zebrafish, integrin α5 (Itga5) functions in the endoderm to regulate formation of specifically the first EP (EP1) and the development of the hyoid cartilage. Here we show that fibronectin (Fn), a major component of the extracellular matrix (ECM), is also required for these developmental processes, and that the penetrance of defects in mutants is temperature-dependent. fn1a-/- embryos exhibited defects that are similar to, but much more severe than, those of itga5-/- embryos, and a loss of integrin av (itgav) function enhanced both endoderm and cartilage defects in itga5-/- embryos, suggesting that Itga5 and Itgav cooperate to transmit signals from Fn to regulate the development of endoderm and cartilage. Whereas the endodermal defects in itga5; itga5v-/- double mutant embryos were comparable to those of fn1a-/- mutants, the cartilage defects were much milder. Furthermore, Fn assembly was detected in migrating CNCCs, and the epithelial organization and differentiation of CNCC-derived arches were impaired in fn1a-/- embryos, indicating that Fn1 exerts functions in arch development that are independent of Itga5 and Itgav. Additionally, reduction of itga5 function in fn1a-/- embryos led to profound defects in body axis elongation, as well as in endoderm and cartilage formation, suggesting that other ECM proteins signal through Itga5 to regulate development of the endoderm and cartilage. Thus, our studies reveal that Fn1a and Itga5 have both overlapping and independent functions in regulating development of the pharyngeal endoderm and cartilage.


Cucurbitacin B Exerts Significant Antidepressant-Like Effects in a Chronic Unpredictable Mild Stress Model of Depression: Involvement of the Hippocampal BDNF-TrkB System.

  • Jian-Bin Ge‎ et al.
  • The international journal of neuropsychopharmacology‎
  • 2023‎

Although depression has been a serious neuropsychiatric disorder worldwide, current antidepressants used in clinical practice have various weaknesses, including delayed onset and low rates of efficacy. Recently, the development of new antidepressants from natural herbal medicine has become one of the important research hotspots. Cucurbitacin B is a natural compound widely distributed in the Cucurbitaceae and Cruciferae families and has many pharmacological activities. The present study aimed to investigate whether cucurbitacin B possess antidepressant-like effects in mice.


Endoplasmic reticulum chaperone GRP78 is involved in autophagy activation induced by ischemic preconditioning in neural cells.

  • Xiang-Yang Zhang‎ et al.
  • Molecular brain‎
  • 2015‎

Our previous finding showed that brain ischemic preconditioning mediates neuroprotection through endoplasmic reticulum (ER) stress-induced autophagy. This study was aimed at exploring the role of ER chaperone GRP78 in IPC induced autophagy activation in neural cells.


TIGAR regulates DNA damage and repair through pentosephosphate pathway and Cdk5-ATM pathway.

  • Hong-Pei Yu‎ et al.
  • Scientific reports‎
  • 2015‎

Previous study revealed that the protective effect of TIGAR in cell survival is mediated through the increase in PPP (pentose phosphate pathway) flux. However, it remains unexplored if TIGAR plays an important role in DNA damage and repair. This study investigated the role of TIGAR in DNA damage response (DDR) induced by genotoxic drugs and hypoxia in tumor cells. Results showed that TIGAR was increased and relocated to the nucleus after epirubicin or hypoxia treatment in cancer cells. Knockdown of TIGAR exacerbated DNA damage and the effects were partly reversed by the supplementation of PPP products NADPH, ribose, or the ROS scavenger NAC. Further studies with pharmacological and genetic approaches revealed that TIGAR regulated the phosphorylation of ATM, a key protein in DDR, through Cdk5. The Cdk5-AMT signal pathway involved in regulation of DDR by TIGAR defines a new role of TIGAR in cancer cell survival and it suggests that TIGAR may be a therapeutic target for cancers.


Early growth response gene 1, a TRBP binding protein, is involved in miRNA activity of miR-125a-3p in human cells.

  • Junxia Wei‎ et al.
  • Cellular signalling‎
  • 2015‎

MicroRNAs (miRNAs) are key regulators of many cellular pathways. However, the picture for components or regulators involved in the process of miRNA biogenesis and function remains to be further elucidated. Early growth response gene 1 (Egr1) has long been considered as tumor suppressor and transcriptional factor involved in cell proliferation and regulation of apoptosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: