Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 38 papers

p38(MAPK)/p53-Mediated Bax induction contributes to neurons degeneration in rotenone-induced cellular and rat models of Parkinson's disease.

  • Feng Wu‎ et al.
  • Neurochemistry international‎
  • 2013‎

Rotenone is an environmental neurotoxin that induces degeneration of dopaminergic (DA) neurons in substantia nigra pars compacta (SNpc), which ultimately results in parkinsonism, but the molecular mechanisms of selective degeneration of nigral DA neurons are not fully understood. In the present study, we investigated the induction of p38(MAPK)/p53 and Bax in SNpc of Lewis rats after chronic treatment with rotenone and the contribution of Bax to rotenone-induced apoptotic commitment of differentiated PC12 cells. Lewis rats were subcutaneously treated with rotenone (1.5mg/kg) twice a day for 50days and the loss of tyrosine hydroxylase (THase), motor function impairment, and expression of p38(MAPK), P-p38(MAPK), p53, and Bax were assessed. After differentiated PC cells were treated with rotenone (500nM) for 6-36h, protein levels of p38(MAPK) and P-p38(MAPK), p53 nuclear translocation, Bax induction and cell death were measured. The results showed that rotenone administration significantly reduced motor activity and caused a loss of THase immunoreactivity in SNpc of Lewis rats. The degeneration of nigral DA neurons was accompanied by the increases in p38(MAPK), P-p38(MAPK), p53, and Bax protein levels. In cultured PC12 cells, rotenone also induced an upregulation of p38(MAPK), P-p38(MAPK), p53 and Bax. Pharmacological inhibition of p38(MAPK) with SB203580 (25μM) blunted rotenone-induced cell apoptosis. Treatment with SB203580 prevented the p53 nuclear translocation and upregulation of Bax. Inhibition of p53 with pifthrin-alpha or Bax with siRNAs significantly reduced rotenone-induced Bax induction and apoptotic cell death. These results suggest that the p38(MAPK)/p53-dependent induction of Bax contributes to rotenone's neurotoxicity in PD models.


Cobrotoxin from Naja naja atra Venom Ameliorates Adriamycin Nephropathy in Rats.

  • Shu-Zhi Wang‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2015‎

Chronic kidney disease (CKD) becomes a global health problem with high morbidity and mortality. Adriamycin- (ADR-) induced rodent chronic nephropathy is a classic experimental model of human minimal lesion nephrotic syndrome. The present study investigated the effect of cobrotoxin (CTX) on ADR-induced nephropathy. Rats were given 6 mg/kg ADR once through the tail vein to replicate ADR nephropathy model. CTX was administered to rats daily by placing a fast dissolving CTX membrane strip under the tongue starting from 5 days prior to ADR administration until the end of experiment. The results showed that CTX ameliorated the symptoms of ADR nephropathy syndrome with reduced body weight loss, proteinuria, hypoalbuminemia, dyslipidemia, serum electrolyte imbalance, oxidative stress, renal function abnormities, and kidney pathological lesions. Anti-inflammatory cytokine IL-10 expression was elevated after CTX administration in ADR nephropathy model. CTX inhibited the phosphorylation of IκB-α and NF-κB p65 nuclear translocation. Meanwhile, CTX upregulated the protein level of podocyte-specific nephrin and downregulated the level of fibrosis-related TGF-β. These findings suggest that CTX may be a potential drug for chronic kidney diseases.


TIGAR plays neuroprotective roles in KA-induced excitotoxicity through reducing neuroinflammation and improving mitochondrial function.

  • Si-Si Huang‎ et al.
  • Neurochemistry international‎
  • 2022‎

Excitotoxicity refers to the ability of excessive extracellular excitatory amino acids to damage neurons via receptor activation. It is a crucial pathogenetic process in neurodegenerative diseases. TP53 is confirmed to be involved in excitotoxicity. It is demonstrated that TP53 induced glycolysis and apoptotic regulator (TIGAR)-regulated metabolic pathway can protect against neuronal injury. However, the role of TIGAR in excitotoxicity and specific mechanisms is still unknown. In this study, an in vivo excitotoxicity model was constructed via stereotypical kainic acid (KA) injection into the striatum of mice. KA reduced TIGAR expression levels, neuroinflammatory responses and mitochondrial dysfunction. TIGAR overexpression could reverse KA-induced neuronal injury by reducing neuroinflammation and improving mitochondrial function, thereby exerting neuroprotective effects. Therefore, this study could provide a potential therapeutic target for neurodegenerative diseases.


Cucurbitacin B Exerts Significant Antidepressant-Like Effects in a Chronic Unpredictable Mild Stress Model of Depression: Involvement of the Hippocampal BDNF-TrkB System.

  • Jian-Bin Ge‎ et al.
  • The international journal of neuropsychopharmacology‎
  • 2023‎

Although depression has been a serious neuropsychiatric disorder worldwide, current antidepressants used in clinical practice have various weaknesses, including delayed onset and low rates of efficacy. Recently, the development of new antidepressants from natural herbal medicine has become one of the important research hotspots. Cucurbitacin B is a natural compound widely distributed in the Cucurbitaceae and Cruciferae families and has many pharmacological activities. The present study aimed to investigate whether cucurbitacin B possess antidepressant-like effects in mice.


Endoplasmic reticulum chaperone GRP78 is involved in autophagy activation induced by ischemic preconditioning in neural cells.

  • Xiang-Yang Zhang‎ et al.
  • Molecular brain‎
  • 2015‎

Our previous finding showed that brain ischemic preconditioning mediates neuroprotection through endoplasmic reticulum (ER) stress-induced autophagy. This study was aimed at exploring the role of ER chaperone GRP78 in IPC induced autophagy activation in neural cells.


TIGAR regulates DNA damage and repair through pentosephosphate pathway and Cdk5-ATM pathway.

  • Hong-Pei Yu‎ et al.
  • Scientific reports‎
  • 2015‎

Previous study revealed that the protective effect of TIGAR in cell survival is mediated through the increase in PPP (pentose phosphate pathway) flux. However, it remains unexplored if TIGAR plays an important role in DNA damage and repair. This study investigated the role of TIGAR in DNA damage response (DDR) induced by genotoxic drugs and hypoxia in tumor cells. Results showed that TIGAR was increased and relocated to the nucleus after epirubicin or hypoxia treatment in cancer cells. Knockdown of TIGAR exacerbated DNA damage and the effects were partly reversed by the supplementation of PPP products NADPH, ribose, or the ROS scavenger NAC. Further studies with pharmacological and genetic approaches revealed that TIGAR regulated the phosphorylation of ATM, a key protein in DDR, through Cdk5. The Cdk5-AMT signal pathway involved in regulation of DDR by TIGAR defines a new role of TIGAR in cancer cell survival and it suggests that TIGAR may be a therapeutic target for cancers.


Suppression of Inflammation and Arthritis by Orally Administrated Cardiotoxin from Naja naja atra.

  • Cao-Xin Chen‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2015‎

Cardiotoxin (CTX) from Naja naja atra venom (NNAV) reportedly had analgesic effect in animal models but its role in inflammation and arthritis was unknown. In this study, we investigated the analgesic, anti-inflammatory, and antiarthritic actions of orally administered CTX-IV isolated from NNAV on rodent models of inflammation and adjuvant arthritis. CTX had significant anti-inflammatory effects in models of egg white induced nonspecific inflammation, filter paper induced rat granuloma formation, and capillary osmosis tests. CTX significantly reduced the swelling of paw induced by egg white, the inflammatory exudation, and the formation of granulomas. CTX reduced the swelling of paw, the AA clinical scores, and pathological alterations of joint. CTX significantly decreased the number of the CD4 T cells and inhibited the expression of relevant proinflammatory cytokines IL-17 and IL-6. CTX significantly inhibited the secretion of proinflammatory cytokine IL-6 and reduced the level of p-STAT3 in FLS. These results suggest that CTX inhibits inflammation and inflammatory pain and adjuvant-induced arthritis. CTX may be a novel therapeutic drug for treatment of arthritis.


Activated cathepsin L is associated with the switch from autophagy to apoptotic death of SH-SY5Y cells exposed to 6-hydroxydopamine.

  • Lingyun Li‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Autophagy and apoptosis are common responses to pathological damage in the process of Parkinson's disease (PD), and lysosome dysfunction may contribute to the etiology of PD's neurodegenerative process. In this study, we demonstrated that the neurotoxin 6-hydroxydopamine (6-OHDA) increased autophagy in SH-SY5Y cells, as determined by detection of the lysosome marker lysosomal-associated membrane protein1, the autophagy protein light chain 3 (LC3)-II and the autophagy substrate P62 protein. Meanwhile, autophagy repression with 3-methyladenine accelerated the activation of caspase-3 and PARP and aggravated the cell apoptotic death induced by 6-OHDA. Furthermore, we found that 6-OHDA treatment resulted in a transient increase in the intracellular and nuclear expression of cathepsin L (CTSL). The CTSL inhibitor, Z-FY-CHO, could promote autophagy, decrease accumulation of P62, and block activation of caspase-3 and PARP. Taken together, these results suggest that activation of autophagy may primarily be a protective process in SH-SY5Y cell death induced by 6-OHDA, and the nuclear translocation of CTSL could enhance the cell apoptotic cascade via disturbing autophagy-apoptotic systems in SH-SY5Y cells. Our findings highlight the potential role of CTSL in the cross talk between autophagy and apoptosis, which might be considered a therapeutic strategy for treatment of pathologic conditions associated with neurodegeneration.


Cathepsin L plays a role in quinolinic acid-induced NF-Κb activation and excitotoxicity in rat striatal neurons.

  • Yan-Ru Wang‎ et al.
  • PloS one‎
  • 2013‎

The present study seeks to investigate the role of cathepsin L in glutamate receptor-induced transcription factor nuclear factor-kappa B (NF-κB) activation and excitotoxicity in rats striatal neurons. Stereotaxic administration of the N-methyl-d-aspartate (NMDA) receptor agonist Quinolinic acid (QA) into the unilateral striatum was used to produce the in vivo excitotoxic model. Co-administration of QA and the cathepsin L inhibitor Z-FF-FMK or 1-Naphthalenesulfonyl-IW-CHO (NaphthaCHO) was used to assess the contribution of cathepsin L to QA-induced striatal neuron death. Western blot analysis and cathepsin L activity assay were used to assess the changes in the levels of cathepsin L after QA treatment. Western blot analysis was used to assess the changes in the protein levels of inhibitor of NF-κB alpha isoform (IκB-α) and phospho-IκB alpha (p-IκBα) after QA treatment. Immunohistochemical analysis was used to detect the effects of Z-FF-FMK or NaphthaCHO on QA-induced NF-κB. Western blot analysis was used to detect the effects of Z-FF-FMK or NaphthaCHO on QA-induced IκB-α phosphorylation and degradation, changes in the levels of IKKα, p-IKKα, TP53, caspase-3, beclin1, p62, and LC3II/LC3I. The results show that QA-induced loss of striatal neurons were strongly inhibited by Z-FF-FMK or NaphthaCHO. QA-induced degradation of IκB-α, NF-κB nuclear translocation, up-regulation of NF-κB responsive gene TP53, and activation of caspase-3 was strongly inhibited by Z-FF-FMK or NaphthaCHO. QA-induced increases in beclin 1, LC3II/LC3I, and down-regulation of p62 were reduced by Z-FF-FMK or NaphthaCHO. These results suggest that cathepsin L is involved in glutamate receptor-induced NF-κB activation. Cathepsin L inhibitors have neuroprotective effects by inhibiting glutamate receptor-induced IκB-α degradation and NF-κB activation.


Differential Effects of Naja naja atra Venom on Immune Activity.

  • Jian-Qun Kou‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2014‎

Previous studies reported that Naja naja atra venom (NNAV) inhibited inflammation and adjuvant arthritis. Here we investigated the role of NNAV in regulation of immune responses in mice. Oral administration of NNAV to normal mice showed significant increase in natural killer cell activity, B lymphocyte proliferation stimulated by lipopolysaccharides, and antibody production in response to sheep red blood cells. Meanwhile, NNAV markedly decreased T lymphocyte proliferation stimulated by concanavalin A, arrested the cell cycle at G0/G1 phase, and suppressed CD4 and CD8 T cell divisions. Furthermore, NNAV inhibited the dinitrofluorobenzene-induced delayed-type hypersensitivity reaction. This modulation of immune responses may be partly attributed to the selective increase in Th1 and Th2 cytokines (IFN-γ, IL-4) secretion and inhibition of Th17 cytokine (IL-17) production. In dexamethasone-induced immunosuppressed mice, NNAV restored the concentration of serum IgG and IgM, while decreasing the percentage of CD4 and CD8 T-cell subsets. These results indicate that NNAV enhances the innate and humoral immune responses while inhibiting CD4 Th17 and CD8 T cell actions, suggesting that NNAV could be a potential therapeutic agent for autoimmune diseases.


NADPH and Mito-Apocynin Treatment Protects Against KA-Induced Excitotoxic Injury Through Autophagy Pathway.

  • Na Liu‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Previous research recognizes that NADPH can produce reduced glutathione (GSH) as a coenzyme and produce ROS as a substrate of NADPH oxidase (NOX). Besides, excessive activation of glutamate receptors results in mitochondrial impairment. The study aims at spelling out the effects of NADPH and Mito-apocynin, a NOX inhibitor which specifically targets the mitochondria, on the excitotoxicity induced by Kainic acid (KA) and its mechanism.


Poloxamer 188 protects neurons against ischemia/reperfusion injury through preserving integrity of cell membranes and blood brain barrier.

  • Jin-Hua Gu‎ et al.
  • PloS one‎
  • 2013‎

Poloxamer 188 (P188), a multiblock copolymer surfactant, has been shown to protect against ischemic tissue injury of cardiac muscle, testes and skeletal muscle, but the mechanisms have not been fully understood. In this study, we explored whether P188 had a protective effect against cerebral ischemia/reperfusion injury and its underlying mechanisms. The in vivo results showed that P188 significantly reduced the infarct volume, ameliorated the brain edema and neurological symptoms 24 h after ischemia/reperfusion. In the long-term outcome study, P188 markedly alleviated brain atrophy and motor impairments and increased survival rate in 3 weeks of post stroke period. Additionally, P188 protected cultured hippucampal HT22 cells against oxygen-glucose deprivation and reoxygenation (OGD/R) injury. The ability in membrane sealing was assessed with two fluorescent membrane-impermeant dyes. The results showed that P188 treatment significantly reduced the PI-positive cells following ischemia/reperfusion injury and repaired the HT22 cell membrane rupture induced by Triton X-100. In addition, P188 inhibited ischemia/reperfusion-induced activation of matrix metalloproteinase (MMP)-9 and leakage of Evans blue. Therefore, the present study concludes that P188 can protect against cerebral ischemia/reperfusion injury, and the protection involves multi-mechanisms in addition to the membrane resealing.


The pro-survival role of autophagy depends on Bcl-2 under nutrition stress conditions.

  • Hai-Dong Xu‎ et al.
  • PloS one‎
  • 2013‎

Autophagy can be induced under nutrition stress conditions. Bcl-2 is a pro-survival protein which inhibits apoptosis and autophagy. However, the role of Bcl-2 in autophagy regulation and cell survival under nutrition deprivation has not been fully understood. This study sought to investigate if Bcl-2 upregulation is essential in limiting autophagic activity and prevent cell death under nutrition deprivation conditions. Autophagic activity was monitored by the changes in GFP-LC3 localization and protein levels of Beclin1, LC3-II, cathepsin D and p62 in neuroblastoma SH-SY5Y cells underwent serum deprivation. Manipulation of Bcl-2 function was achieved with siRNAs and small molecular inhibitors. The cell viability and apoptosis were assessed with MTT assay and Annexin V/PI staining. The results showed that serum starvation increased protein levels of LC3-II and Beclin1 but decreased autophagy substrate p62. Autophagy activation induced by serum deprivation and rapamycin was accompanied by an upregulation of Bcl-2 protein levels. When Bcl-2 was knocked down with siRNA or inhibited with HA 14-1 or ABT-737, serum starvation induced profound cell death and enhanced autophagic flux under nutrition deprivation conditions, while knockdown of autophagic gene Beclin1 or autophagy inhibitors (bafilomycin A1 and E64D), rescued cell death. In contrast, overexpression of Bcl-2 inhibited autophagy and blocked cell death in response to serum deprivation. These data suggest that Bcl-2 plays an essential role in limiting autophagy activation and preventing initiation of programmed cell death. Thus Bcl-2 may be an important mechanism for balancing beneficial and detrimental impacts of autophagy on cell survival.


The role of chaperone-mediated autophagy in huntingtin degradation.

  • Lin Qi‎ et al.
  • PloS one‎
  • 2012‎

Huntington Disease (HD) is caused by an abnormal expansion of polyQ tract in the protein named huntingtin (Htt). HD pathology is featured by accumulation and aggregation of mutant Htt in striatal and cortical neurons. Aberrant Htt degradation is implicated in HD pathogenesis. The aim of this study was to investigate the regulatory role of chaperone-mediated autophagy (CMA) components, heat shock protein cognate 70 (Hsc70) and lysosome-associated protein 2A (LAMP-2A) in degradation of Htt fragment 1-552aa (Htt-552). A cell model of HD was produced by overexpression of Htt-552 with adenovirus. The involvement of CMA components in degradation of Htt-552 was determined with over-expression or silencing of Hsc70 and LAMP-2A. The results confirmed previous reports that both macroautophagy and CMA were involved in degradation of Htt-552. Changing the levels of CMA-related proteins affected the accumulation of Htt-552. The lysosomal binding and luminal transport of Htt-552 was demonstrated by incubation of Htt-552 with isolated lysosomes. Expansion of the polyQ tract in Htt-552 impaired its uptake and degradation by lysosomes. Mutation of putative KFERQ motif in wild-type Htt-552 interfered with interactions between Htt-552 and Hsc70. Endogenous Hsc70 and LAMP-2A interacted with exogenously expressed Htt-552. Modulating the levels of CMA related proteins degraded endogenous full-length Htt. These studies suggest that Hsc70 and LAMP-2A through CMA play a role in the clearance of Htt and suggest a novel strategy to target the degradation of mutant Htt.


Cobrotoxin extracted from Naja atra venom relieves arthritis symptoms through anti-inflammation and immunosuppression effects in rat arthritis model.

  • Qi Zhu‎ et al.
  • Journal of ethnopharmacology‎
  • 2016‎

The Naja atra (Chinese cobra), primarily distributing in the low or medium altitude areas of southern China and Taiwan, was considered as a medicine in traditional Chinese medicine and used to treat pain, inflammation and arthritis.


A sphingosine kinase 2-mimicking TAT-peptide protects neurons against ischemia-reperfusion injury by activating BNIP3-mediated mitophagy.

  • Jia-Li Chen‎ et al.
  • Neuropharmacology‎
  • 2020‎

We have previously shown that sphingosine kinase 2 (SPK2) interacts with Bcl-2 via its BH3 domain, activating autophagy by inducing the dissociation of Beclin-1/Bcl-2 complexes, and that a TAT-SPK2 peptide containing the BH3 domain of SPK2 protects neurons against ischemic injury. The goals of the present study were to establish the functional significance of these findings, by testing whether TAT-SPK2 was effective in a mouse model of ischemic stroke, and to explore potential underlying mechanisms. Mice were administered with TAT-SPK2 by intraperitoneal injection before or after transient middle cerebral artery occlusion (tMCAO). Infarct volume, neurological deficit and brain water content were assessed 24 h after reperfusion. Mitophagy inhibitor Mdivi-1 and BNIP3 siRNAs were used to examine the involvement of BNIP3-dependent mitophagy in the neuroprotection of TAT-SPK2. Mitophagy was quantified by immunoblotting, immunofluorescence and electron microscopy. The interaction between TAT-SPK2 and Bcl-2, Bcl-2 and BNIP3 was detected by co-immunoprecipitation. In the tMCAO model, pre-treatment with TAT-SPK2 significantly reduced infarct volume, improved neurological function and decreased brain edema. Neuroprotection by TAT-SPK2 was still seen when the peptide was administered 3 h after reperfusion. TAT-SPK2 also significantly improved functional recovery and reduced long-term brain atrophy of the ischemic hemisphere 30 days after administration. Our studies further showed that TAT-SPK2 directly binds to Bcl-2 and disrupts Bcl-2/Beclin-1 or Bcl-2/BNIP3 complexes to induce mitophagy. These results suggest that TAT-SPK2 protects neurons against ischemia reperfusion injury by activating BNIP3-mediated mitophagy. Agents exploiting this molecular mechanism are potential candidates for the treatment of ischemic stroke.


DRAM1 deficiency affects the organization and function of the Golgi apparatus.

  • Mingzhen Wei‎ et al.
  • Cellular signalling‎
  • 2019‎

DRAM1 (DNA damage-regulated autophagy modulator 1) is a transmembrane protein that predominantly localizes to the lysosome but is also found in other membranous organelles; however, its function in these organelles remains largely unknown. We found that DRAM1 was partially located in the Golgi apparatus, and knockdown of DRAM1 caused fragmentation of the Golgi apparatus in cells. The phenomenon of fragmented Golgi was not related to microtubule organization, and there was no direct interaction between DRAM1 and Golgi structural proteins (ARF1, GM130, syntaxin 6 and GRASP55). Moreover, Golgi-targeting DRAM1 failed to rescue the fragmentation of Golgi in DRAM1-deficient cells. The transport of ts045-VSVG-GFP, an indicator of movement from the Golgi apparatus to the plasma membrane, was delayed in DRAM1-knockdown cells. Moreover, the trafficking of CI-MPR from the plasma membrane to the Golgi was also impeded in DRAM1-knockdown cells. These results indicated that DRAM1 regulated the structure of the Golgi apparatus and affected Golgi apparatus-associated vesicular transport.


Melatonin ameliorates hypoglycemic stress-induced brain endothelial tight junction injury by inhibiting protein nitration of TP53-induced glycolysis and apoptosis regulator.

  • Cheng-Kun Wang‎ et al.
  • Journal of pineal research‎
  • 2017‎

Severe hypoglycemia has a detrimental impact on the cerebrovasculature, but the molecular events that lead to the disruption of the integrity of the tight junctions remain unclear. Here, we report that the microvessel integrity was dramatically compromised (59.41% of wild-type mice) in TP53-induced glycolysis and apoptosis regulator (TIGAR) transgenic mice stressed by hypoglycemia. Melatonin, a potent antioxidant, protects against hypoglycemic stress-induced brain endothelial tight junction injury in the dosage of 400 nmol/L in vitro. FRET (fluorescence resonance energy transfer) imaging data of endothelial cells stressed by low glucose revealed that TIGAR couples with calmodulin to promote TIGAR tyrosine nitration. A tyrosine 92 mutation interferes with the TIGAR-dependent NADPH generation (55.60% decreased) and abolishes its protective effect on tight junctions in human brain microvascular endothelial cells. We further demonstrate that the low-glucose-induced disruption of occludin and Caludin5 as well as activation of autophagy was abrogated by melatonin-mediated blockade of nitrosative stress in vitro. Collectively, we provide information on the detailed molecular mechanisms for the protective actions of melatonin on brain endothelial tight junctions and suggest that this indole has translational potential for severe hypoglycemia-induced neurovascular damage.


Andrographolide alleviates Parkinsonism in MPTP-PD mice via targeting mitochondrial fission mediated by dynamin-related protein 1.

  • Ji Geng‎ et al.
  • British journal of pharmacology‎
  • 2019‎

Accumulating evidence indicates that mitochondrial dynamics play an important role in the progressive deterioration of dopaminergic neurons. Andrographolide has been found to exert neuroprotective effects in several models of neurological diseases. However, the mechanism of how andrographolide protects neurons in Parkinson's disease (PD) remains not fully understood.


Sphingosine kinase 2 activates autophagy and protects neurons against ischemic injury through interaction with Bcl-2 via its putative BH3 domain.

  • Dan-Dan Song‎ et al.
  • Cell death & disease‎
  • 2017‎

Our previous findings suggest that sphingosine kinase 2 (SPK2) mediates ischemic tolerance and autophagy in cerebral preconditioning. The aim of this study was to determine by which mechanism SPK2 activates autophagy in neural cells. In both primary murine cortical neurons and HT22 hippocampal neuronal cells, overexpression of SPK2 increased LC3II and enhanced the autophagy flux. SPK2 overexpression protected cortical neurons against oxygen glucose deprivation (OGD) injury, as evidenced by improvement of neuronal morphology, increased cell viability and reduced lactate dehydrogenase release. The inhibition of autophagy effectively suppressed the neuroprotective effect of SPK2. SPK2 overexpression reduced the co-immunoprecipitation of Beclin-1 and Bcl-2, while Beclin-1 knockdown inhibited SPK2-induced autophagy. Both co-immunoprecipitation and GST pull-down analysis suggest that SPK2 directly interacts with Bcl-2. SPK2 might interact to Bcl-2 in the cytoplasm. Notably, an SPK2 mutant with L219A substitution in its putative BH3 domain was not able to activate autophagy. A Tat peptide fused to an 18-amino acid peptide encompassing the native, but not the L219A mutated BH3 domain of SPK2 activated autophagy in neural cells. The Tat-SPK2 peptide also protected neurons against OGD injury through autophagy activation. These results suggest that SPK2 interacts with Bcl-2 via its BH3 domain, thereby dissociating it from Beclin-1 and activating autophagy. The observation that Tat-SPK2 peptide designed from the BH3 domain of SPK2 activates autophagy and protects neural cells against OGD injury suggest that this structure may provide the basis for a novel class of therapeutic agents against ischemic stroke.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: