Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 449 papers

Prediction of disease severity in patients with early rheumatoid arthritis by gene expression profiling.

  • Zheng Liu‎ et al.
  • Human genomics and proteomics : HGP‎
  • 2009‎

In order to test the ability of peripheral blood gene expression profiles to predict future disease severity in patients with early rheumatoid arthritis (RA), a group of 17 patients (1 ± 0.2 years disease duration) was evaluated at baseline for gene expression profiles. Disease status was evaluated after a mean of 5 years using an index combining pain, global and recoded MHAQ scores. Unsupervised and supervised algorithms identified "predictor genes" whose combined expression levels correlated with follow-up disease severity scores. Unsupervised clustering algorithms separated patients into two branches. The only significant difference between these two groups was the disease severity score; demographic variables and medication usage were not different. Supervised T-Test analysis identified 19 "predictor genes" of future disease severity. Results were validated in an independent cohort of subjects of established RA with using Support Vector Machines and K-Nearest-Neighbor Classification. Our study demonstrates that peripheral blood gene expression profiles may be a useful tool to predict future disease severity in patients with early and established RA.


Synergistic antitumor effect of AAV-mediated TRAIL expression combined with cisplatin on head and neck squamous cell carcinoma.

  • Minghong Jiang‎ et al.
  • BMC cancer‎
  • 2011‎

Adeno-associated virus-2 (AAV-2)-mediated gene therapy is quite suitable for local or regional application in head and neck cancer squamous cell carcinoma (HNSCC). However, its low transduction efficiency has limited its further development as a therapeutic agent. DNA damaging agents have been shown to enhance AAV-mediated transgene expression. Cisplatin, one of the most effective chemotherapeutic agents, has been recognized to cause cancer cell death by apoptosis with a severe toxicity. This study aims to evaluate the role of cisplatin in AAV-mediated tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression and the effect on HNSCC both in vitro and in vivo.


In Vivo Loss of Function Screening Reveals Carbonic Anhydrase IX as a Key Modulator of Tumor Initiating Potential in Primary Pancreatic Tumors.

  • Nabendu Pore‎ et al.
  • Neoplasia (New York, N.Y.)‎
  • 2015‎

Reprogramming of energy metabolism is one of the emerging hallmarks of cancer. Up-regulation of energy metabolism pathways fuels cell growth and division, a key characteristic of neoplastic disease, and can lead to dependency on specific metabolic pathways. Thus, targeting energy metabolism pathways might offer the opportunity for novel therapeutics. Here, we describe the application of a novel in vivo screening approach for the identification of genes involved in cancer metabolism using a patient-derived pancreatic xenograft model. Lentiviruses expressing short hairpin RNAs (shRNAs) targeting 12 different cell surface protein transporters were separately transduced into the primary pancreatic tumor cells. Transduced cells were pooled and implanted into mice. Tumors were harvested at different times, and the frequency of each shRNA was determined as a measure of which ones prevented tumor growth. Several targets including carbonic anhydrase IX (CAIX), monocarboxylate transporter 4, and anionic amino acid transporter light chain, xc- system (xCT) were identified in these studies and shown to be required for tumor initiation and growth. Interestingly, CAIX was overexpressed in the tumor initiating cell population. CAIX expression alone correlated with a highly tumorigenic subpopulation of cells. Furthermore, CAIX expression was essential for tumor initiation because shRNA knockdown eliminated the ability of cells to grow in vivo. To the best of our knowledge, this is the first parallel in vivo assessment of multiple novel oncology target genes using a patient-derived pancreatic tumor model.


Ultrasound-Targeted Microbubble Destruction Improves the Migration and Homing of Mesenchymal Stem Cells after Myocardial Infarction by Upregulating SDF-1/CXCR4: A Pilot Study.

  • Lu Li‎ et al.
  • Stem cells international‎
  • 2015‎

Mesenchymal stem cell (MSC) therapy shows considerable promise for the treatment of myocardial infarction (MI). However, the inefficient migration and homing of MSCs after systemic infusion have limited their therapeutic applications. Ultrasound-targeted microbubble destruction (UTMD) has proven to be promising to improve the homing of MSCs to the ischemic myocardium, but the concrete mechanism remains unclear. We hypothesize that UTMD promotes MSC homing by upregulating SDF-1/CXCR4, and this study was aimed at exploring this potential mechanism. We analyzed SDF-1/CXCR4 expression after UTMD treatment in vitro and in vivo and counted the number of homing MSCs in MI areas. The in vitro results demonstrated that UTMD not only led to elevated secretion of SDF-1 but also resulted in an increased proportion of MSCs that expressed surface CXCR4. The in vivo findings show an increase in the number of homing MSCs and higher expression of SDF-1/CXCR4 in the UTMD combined with MSCs infusion group compared to other groups. In conclusion, UTMD can increase SDF-1 expression in the ischemic myocardium and upregulate the expression of surface CXCR4 on MSCs, which provides a molecular mechanism for the homing of MSCs assisted by UTMD via SDF-1/CXCR4 axis.


Cigarette smoke silences innate lymphoid cell function and facilitates an exacerbated type I interleukin-33-dependent response to infection.

  • Jennifer Kearley‎ et al.
  • Immunity‎
  • 2015‎

Cigarette smoking is a major risk factor for chronic obstructive pulmonary disease and is presumed to be central to the altered responsiveness to recurrent infection in these patients. We examined the effects of smoke priming underlying the exacerbated response to viral infection in mice. Lack of interleukin-33 (IL-33) signaling conferred complete protection during exacerbation and prevented enhanced inflammation and exaggerated weight loss. Mechanistically, smoke was required to upregulate epithelial-derived IL-33 and simultaneously alter the distribution of the IL-33 receptor ST2. Specifically, smoke decreased ST2 expression on group 2 innate lymphoid cells (ILC2s) while elevating ST2 expression on macrophages and natural killer (NK) cells, thus altering IL-33 responsiveness within the lung. Consequently, upon infection and release, increased local IL-33 significantly amplified type I proinflammatory responses via synergistic modulation of macrophage and NK cell function. Therefore, in COPD, smoke alters the lung microenvironment to facilitate an alternative IL-33-dependent exaggerated proinflammatory response to infection, exacerbating disease.


Crystal and EM structures of human phosphoribosyl pyrophosphate synthase I (PRS1) provide novel insights into the disease-associated mutations.

  • Peng Chen‎ et al.
  • PloS one‎
  • 2015‎

Human PRS1, which is indispensable for the biosynthesis of nucleotides, deoxynucleotides and their derivatives, is associated directly with multiple human diseases because of single base mutation. However, a molecular understanding of the effect of these mutations is hampered by the lack of understanding of its catalytic mechanism. Here, we reconstruct the 3D EM structure of the PRS1 apo state. Together with the native stain EM structures of AMPNPP, AMPNPP and R5P, ADP and the apo states with distinct conformations, we suggest the hexamer is the enzymatically active form. Based on crystal structures, sequence analysis, mutagenesis, enzyme kinetics assays, and MD simulations, we reveal the conserved substrates binding motifs and make further analysis of all pathogenic mutants.


Ultrasound-targeted stromal cell-derived factor-1-loaded microbubble destruction promotes mesenchymal stem cell homing to kidneys in diabetic nephropathy rats.

  • Shengzheng Wu‎ et al.
  • International journal of nanomedicine‎
  • 2014‎

Mesenchymal stem cell (MSC) therapy has been considered a promising strategy to cure diabetic nephropathy (DN). However, insufficient MSCs can settle in injured kidneys, which constitute one of the major barriers to the effective implementation of MSC therapy. Stromal cell-derived factor-1 (SDF-1) plays a vital role in MSC migration and involves activation, mobilization, homing, and retention, which are presumably related to the poor homing in DN therapy. Ultrasound-targeted microbubble destruction has become one of the most promising strategies for the targeted delivery of drugs and genes. To improve MSC homing to DN kidneys, we present a strategy to increase SDF-1 via ultrasound-targeted microbubble destruction. In this study, we developed SDF-1-loaded microbubbles (MB(SDF-1)) via covalent conjugation. The characterization and bioactivity of MB(SDF-1) were assessed in vitro. Target release in the targeted kidneys was triggered with diagnostic ultrasound in combination with MB(SDF-1). The related bioeffects were also elucidated. Early DN was induced in rats with streptozotocin. Green fluorescent protein-labeled MSCs were transplanted intravenously following the target release of SDF-1 in the kidneys of normal and DN rats. The homing efficacy was assessed by detecting the implanted exogenous MSCs at 24 hours. The in vitro results showed an impressive SDF-1 loading efficacy of 79% and a loading content of 15.8 μg/mL. MB(SDF-1) remained bioactive as a chemoattractant. In the in vivo study, SDF-1 was successfully released in the targeted kidneys. The homing efficacy of MSCs to DN kidneys after the target release of SDF-1 was remarkably ameliorated at 24 hours compared with control treatments in normal rats and DN rats. In conclusion, ultrasound-targeted MB(SDF-1) destruction could promote the homing of MSCs to early DN kidneys and provide a novel potential therapeutic approach for DN kidney repair.


Enzymatic oxidation of cholesterol: properties and functional effects of cholestenone in cell membranes.

  • Maarit Neuvonen‎ et al.
  • PloS one‎
  • 2014‎

Bacterial cholesterol oxidase is commonly used as an experimental tool to reduce cellular cholesterol content. That the treatment also generates the poorly degradable metabolite 4-cholesten-3-one (cholestenone) has received less attention. Here, we investigated the membrane partitioning of cholestenone using simulations and cell biological experiments and assessed the functional effects of cholestenone in human cells. Atomistic simulations predicted that cholestenone reduces membrane order, undergoes faster flip-flop and desorbs more readily from membranes than cholesterol. In primary human fibroblasts, cholestenone was released from membranes to physiological extracellular acceptors more avidly than cholesterol, but without acceptors it remained in cells over a day. To address the functional effects of cholestenone, we studied fibroblast migration during wound healing. When cells were either cholesterol oxidase treated or part of cellular cholesterol was exchanged for cholestenone with cyclodextrin, cell migration during 22 h was markedly inhibited. Instead, when a similar fraction of cholesterol was removed using cyclodextrin, cells replenished their cholesterol content in 3 h and migrated similarly to control cells. Thus, cholesterol oxidation produces long-term functional effects in cells and these are in part due to the generated membrane active cholestenone.


Identification and Characterization of BMS-955176, a Second-Generation HIV-1 Maturation Inhibitor with Improved Potency, Antiviral Spectrum, and Gag Polymorphic Coverage.

  • Beata Nowicka-Sans‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2016‎

BMS-955176 is a second-generation human immunodeficiency virus type 1 (HIV-1) maturation inhibitor (MI). A first-generation MI, bevirimat, showed clinical efficacy in early-phase studies, but ∼50% of subjects had viruses with reduced susceptibility associated with naturally occurring polymorphisms in Gag near the site of MI action. MI potency was optimized using a panel of engineered reporter viruses containing site-directed polymorphic changes in Gag that reduce susceptibility to bevirimat (including V362I, V370A/M/Δ, and T371A/Δ), leading incrementally to the identification of BMS-955176. BMS-955176 exhibits potent activity (50% effective concentration [EC50], 3.9 ± 3.4 nM [mean ± standard deviation]) toward a library (n = 87) of gag/pr recombinant viruses representing 96.5% of subtype B polymorphic Gag diversity near the CA/SP1 cleavage site. BMS-955176 exhibited a median EC50 of 21 nM toward a library of subtype B clinical isolates assayed in peripheral blood mononuclear cells (PBMCs). Potent activity was maintained against a panel of reverse transcriptase, protease, and integrase inhibitor-resistant viruses, with EC50s similar to those for the wild-type virus. A 5.4-fold reduction in EC50 occurred in the presence of 40% human serum plus 27 mg/ml of human serum albumin (HSA), which corresponded well to an in vitro measurement of 86% human serum binding. Time-of-addition and pseudotype reporter virus studies confirm a mechanism of action for the compound that occurs late in the virus replication cycle. BMS-955176 inhibits HIV-1 protease cleavage at the CA/SP1 junction within Gag in virus-like particles (VLPs) and in HIV-1-infected cells, and it binds reversibly and with high affinity to assembled Gag in purified HIV-1 VLPs. Finally, in vitro combination studies showed no antagonistic interactions with representative antiretrovirals (ARVs) of other mechanistic classes. In conclusion, BMS-955176 is a second-generation MI with potent in vitro anti-HIV-1 activity and a greatly improved preclinical profile compared to that of bevirimat.


High NUCB2 expression level represents an independent negative prognostic factor in Chinese cohorts of non-metastatic clear cell renal cell carcinoma patients.

  • Hangcheng Fu‎ et al.
  • Oncotarget‎
  • 2017‎

This study aimed to investigate the prognostic significance of NUCB2 in clear cell renal cell carcinoma.


Prognostic value of vascular mimicry in patients with urothelial carcinoma of the bladder after radical cystectomy.

  • Lin Zhou‎ et al.
  • Oncotarget‎
  • 2016‎

Vascular mimicry (VM) refers to the plasticity of aggressive cancer cells forming de novo vascular networks, which promoted tumor metastasis. The aim of this study was evaluate the impact of VM on recurrence-free survival (RFS) in urothelial carcinoma of the bladder (UCB). Records from 202 patients treated with radical cystectomy (RC) for UCB at Zhongshan Hospital between 2002 and 2014 were reviewed. The presence of VM was identified by CD31-PAS double staining. Positive VM staining occurred in 19.3% (39 of 202) UCB cases, and it was associated with increased risks of recurrence (Log-Rank p<0.001). VM was identified as an independent prognostic factor (p=0.002). In the cohort with MIBC, patients with VM negative got CSS benefit from the use of ACT (p = 0.048). As for lung metastasis, the combination of VM and TNM stage (AUC 0.792) showed a better prognostic value than TNM stage alone (AUC 0.748, p = 0.008) or VM alone (AUC 0.714, p = 0.023). Vascular mimicry could be a potential prognosticator for recurrence-free survival in patients with UCB after RC. Vascular mimicry seems to predict risk of developing lung metastases after RC. The presence of VM identified a subgroup of patients with MIBC who appeared to benefit from adjuvant chemotherapy.


Cadmium-induced apoptosis of Siberian tiger fibroblasts via disrupted intracellular homeostasis.

  • Hui Wang‎ et al.
  • Biological research‎
  • 2016‎

Heavy metals can cause great harm to Siberian tigers in the natural environment. Cadmium (Cd2+) is an environmental contaminant that affects multiple cellular processes, including cell proliferation, differentiation, and survival. It has been shown to induce apoptosis in a variety of cell types and tissues.


Alterations of lymph nodes evaluation after colon cancer resection: patient and tumor heterogeneity should be taken into consideration.

  • Xu Guan‎ et al.
  • Oncotarget‎
  • 2016‎

Despite the adequacy of nodal evaluation was gradually improved for colon cancer (CC), rare attention has been paid for the effect of patient and tumor heterogeneity on nodal evaluation. We identified 109902 CC patients in stage I-III from Surveillance, Epidemiology, and End-Results (SEER) database during 2004-2013. The lymph nodes evaluations were separately assessed in different patient- and tumor-related features, including gender, age, T stage, histology, tumor differentiation, tumor size and tumor location. The 5-year cancer specific survival (CSS) was calculated with Kaplan-Meier method, log-rank tests were used to compare the differences of CSS in patients with ≥12 and <12 lymph nodes examined. Here, we identified features including gender, age, T stage, tumor differentiation, tumor size and location were independently associated with the median number of lymph node, the rate of ≥12 lymph nodes and the rate of node positivity of CC patients. We then divided CC patients into 29 subgroups according to different patient- and tumor-related features. The median number of lymph node presented a large variance from 12 to 24, the rate of ≥12 lymph nodes increased from 53.2% to 91.2% under the combined effect of patient and tumor heterogeneity. Furthermore, the positive association between increased lymph nodes count and improved survival couldn't be observed in 8261 CC patients with the effect of this heterogeneity. In conclusion, the tumor and patient heterogeneity lead to large alterations of nodal evaluation; we should pay more attention to this effect in clinical practice.


Characterization of oral bacterial diversity of irradiated patients by high-throughput sequencing.

  • Yue-Jian Hu‎ et al.
  • International journal of oral science‎
  • 2013‎

The objective of this study was to investigate the compositional profiles and microbial shifts of oral microbiota during head-and-neck radiotherapy. Bioinformatic analysis based on 16S rRNA gene pyrosequencing was performed to assess the diversity and variation of oral microbiota of irradiated patients. Eight patients with head and neck cancers were involved in this study. For each patient, supragingival plaque samples were collected at seven time points before and during radiotherapy. A total of 147,232 qualified sequences were obtained through pyrosequencing and bioinformatic analysis, representing 3,460 species level operational taxonomic units (OTUs) and 140 genus level taxa. Temporal variations were observed across different time points and supported by cluster analysis based on weighted UniFrac metrics. Moreover, the low evenness of oral microbial communities in relative abundance was revealed by Lorenz curves. This study contributed to a better understanding of the detailed characterization of oral bacterial diversity of irradiated patients.


High-resolution mapping of h1 linker histone variants in embryonic stem cells.

  • Kaixiang Cao‎ et al.
  • PLoS genetics‎
  • 2013‎

H1 linker histones facilitate higher-order chromatin folding and are essential for mammalian development. To achieve high-resolution mapping of H1 variants H1d and H1c in embryonic stem cells (ESCs), we have established a knock-in system and shown that the N-terminally tagged H1 proteins are functionally interchangeable to their endogenous counterparts in vivo. H1d and H1c are depleted from GC- and gene-rich regions and active promoters, inversely correlated with H3K4me3, but positively correlated with H3K9me3 and associated with characteristic sequence features. Surprisingly, both H1d and H1c are significantly enriched at major satellites, which display increased nucleosome spacing compared with bulk chromatin. While also depleted at active promoters and enriched at major satellites, overexpressed H1(0) displays differential binding patterns in specific repetitive sequences compared with H1d and H1c. Depletion of H1c, H1d, and H1e causes pericentric chromocenter clustering and de-repression of major satellites. These results integrate the localization of an understudied type of chromatin proteins, namely the H1 variants, into the epigenome map of mouse ESCs, and we identify significant changes at pericentric heterochromatin upon depletion of this epigenetic mark.


Synthesis, biological evaluation, and pharmacokinetic study of novel liguzinediol prodrugs.

  • Zheng Liu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2013‎

Liguzinediol (LZDO) ester prodrugs 3-5 were synthesized and evaluated in vitro and in vivo for their potential use in prolonging the half-life of the parent drug LZDO (1a) in vivo. Prodrugs 3-5 were found to display a potent positive inotropic effect on the myocardium, without the risk of arrhythmia. Prodrugs 3-5 rapidly underwent enzymatic hydrolysis to release the parent compound LZDO in 1-3 h in rat liver microsomes and rat plasma. The half-life of the parent compound was prolonged after intragastric administration of prodrug 3, which was found to be a superior prodrug candidate for increasing myocardial contractility.


A high density of tertiary lymphoid structure B cells in lung tumors is associated with increased CD4+ T cell receptor repertoire clonality.

  • Wei Zhu‎ et al.
  • Oncoimmunology‎
  • 2015‎

T and B cell receptor (TCR and BCR, respectively) Vβ or immunoglobulin heavy chain complementarity-determining region 3 sequencing allows monitoring of repertoire changes through recognition, clonal expansion, affinity maturation, and T or B cell activation in response to antigen. TCR and BCR repertoire analysis can advance understanding of antitumor immune responses in the tumor microenvironment. TCR and BCR repertoires of sorted CD4+, CD8+ or CD19+ cells in tumor, non-tumoral distant tissue (NT), and peripheral compartments (blood/draining lymph node [P]) from 47 non-small cell lung cancer (NSCLC) patients (agemedian = 68 y) were sequenced. The clonotype spectra were assessed among different tissues and correlated with clinical and immunological parameters. In all tissues, CD4+ and CD8+ TCR repertoires had greater clonality relative to CD19+ BCR. CD4+ T cells exhibited greater clonality in NT compared to tumor (p = 0.002) and P (p < 0.001), concentrated among older patients (age > 68). Younger patients exhibited greater CD4+ T cell diversity in P compared to older patients (p = 0.05), and greater CD4+ T cell clonality in tumor relative to P (p < 0.001), with fewer shared clonotypes between tumor and P than older patients (p = 0.04). More interestingly, greater CD4+ and CD8+ T cell clonality in tumor and P, respectively (both p = 0.05), correlated with high density of tumor-associated tertiary lymphoid structure (TLS) B cells, a biomarker of higher overall survival in NSCLC. Results indicate distinct adaptive immune responses in NSCLC, where peripheral T cell diversity is modulated by age, and tumor T cell clonal expansion is favored by the presence of TLSs in the tumor microenvironment.


Pregnancy-specific glycoprotein 9 (PSG9), a driver for colorectal cancer, enhances angiogenesis via activation of SMAD4.

  • Lei Yang‎ et al.
  • Oncotarget‎
  • 2016‎

PSG9 is a member of the pregnancy-specific glycoprotein (PSG) family and has been shown to contribute to the progression of colorectal cancer (CRC) and cancer-related angiogenesis. Here, we aim to investigate abnormal PSG9 levels in patients with CRC and to emphasize the role of PSG9 in driving tumorigenesis. Serum from 140 patients with CRC and 125 healthy controls as well as 74 paired tumors and adjacent normal tissue were used to determine PSG9 levels. We discovered that PSG9 was significantly increased in serum (P<0.001) and in tumor tissues (P<0.001) from patients with CRC. Interestingly, the increased PSG9 levels correlated with poor survival (P=0.009) and microvessel density (MVD) (P=0.034). The overexpression of PSG9 strongly promoted the proliferation and migration of HCT-116 and HT-29 cells. However, PSG9 depletion inhibited the proliferation of SW-480 cells. Using a human umbilical vein endothelial cell tube-forming assay, we found that PSG9 promoted angiogenesis. The overexpression of PSG9 also increased the growth of tumor xenografts in nude mice. Co-immunoprecipitation experiments revealed that PSG9 was bound to SMAD4. The PSG9/SMAD4 complex recruited cytoplasmic SMAD2/3 to form a complex, which enhanced SMAD4 nuclear retention. The PSG9 and SMAD4 complex activated the expression of multiple angiogenesis-related genes (included IGFBP-3, PDGF-AA, GM-CSF, and VEGFA). Together, our findings illustrate the innovative mechanism by which PSG9 drives the progression of CRC and tumor angiogenesis. This occurs via nuclear translocation of PSG9/SMAD4, which activates angiogenic cytokines. Therefore, our study may provide evidence for novel treatment strategies by targeting PSG9 in antiangiogenic cancer therapy.


Taxonomy and physiological characterisation of Scheffersomyces titanus sp. nov., a new D-xylose-fermenting yeast species from China.

  • Xiao-Jing Liu‎ et al.
  • Scientific reports‎
  • 2016‎

Three strains of a d-xylose-fermenting yeast species were isolated from the host beetle Dorcus titanus collected from two different localities in Henan Province, Central China. These strains formed two hat-shaped ascospores in conjugated and deliquescent asci. Multilocus phylogenetic analysis that included the nearly complete small subunit (SSU), the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit (LSU) rDNAs, as well as RNA polymerase II largest subunit (RPB1) gene demonstrated that these strains represent a novel yeast species belonging to the genus Scheffersomyces. The phylogenetic analysis based on the nucleotide sequences of the xylose reductase (XYL1) gene supported the view that the new strains could be grouped as a unique species. Although this new species is highly similar to Scheffersomyces stipitis-like yeasts in terms of nrDNA sequences and morphological and physiological characteristics, the species can be clearly differentiated from its close relatives on the basis of the sequences of XYL1 and RPB1. Therefore, a novel yeast species, Scheffersomyces titanus sp. nov., is proposed to accommodate these strains. The type strain is NYNU 14712(T) (CICC 33061(T) = CBS 13926(T)).


Molecular and cellular response profiles induced by the TLR4 agonist-based adjuvant Glucopyranosyl Lipid A.

  • Stacie L Lambert‎ et al.
  • PloS one‎
  • 2012‎

Toll-like receptor (TLR)4 agonists are known potent immunostimulatory compounds. These compounds can be formulated as part of novel adjuvants to enhance vaccine medicated immune responses. However, the contribution of the formulation to the innate in vivo activity of TLR4 agonist compounds is not well understood.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: