Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Ultrasound-targeted stromal cell-derived factor-1-loaded microbubble destruction promotes mesenchymal stem cell homing to kidneys in diabetic nephropathy rats.

International journal of nanomedicine | 2014

Mesenchymal stem cell (MSC) therapy has been considered a promising strategy to cure diabetic nephropathy (DN). However, insufficient MSCs can settle in injured kidneys, which constitute one of the major barriers to the effective implementation of MSC therapy. Stromal cell-derived factor-1 (SDF-1) plays a vital role in MSC migration and involves activation, mobilization, homing, and retention, which are presumably related to the poor homing in DN therapy. Ultrasound-targeted microbubble destruction has become one of the most promising strategies for the targeted delivery of drugs and genes. To improve MSC homing to DN kidneys, we present a strategy to increase SDF-1 via ultrasound-targeted microbubble destruction. In this study, we developed SDF-1-loaded microbubbles (MB(SDF-1)) via covalent conjugation. The characterization and bioactivity of MB(SDF-1) were assessed in vitro. Target release in the targeted kidneys was triggered with diagnostic ultrasound in combination with MB(SDF-1). The related bioeffects were also elucidated. Early DN was induced in rats with streptozotocin. Green fluorescent protein-labeled MSCs were transplanted intravenously following the target release of SDF-1 in the kidneys of normal and DN rats. The homing efficacy was assessed by detecting the implanted exogenous MSCs at 24 hours. The in vitro results showed an impressive SDF-1 loading efficacy of 79% and a loading content of 15.8 μg/mL. MB(SDF-1) remained bioactive as a chemoattractant. In the in vivo study, SDF-1 was successfully released in the targeted kidneys. The homing efficacy of MSCs to DN kidneys after the target release of SDF-1 was remarkably ameliorated at 24 hours compared with control treatments in normal rats and DN rats. In conclusion, ultrasound-targeted MB(SDF-1) destruction could promote the homing of MSCs to early DN kidneys and provide a novel potential therapeutic approach for DN kidney repair.

Pubmed ID: 25516709 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


XPP-Aut: X-Windows Phase Plane plus Auto (tool)

RRID:SCR_001996

XPPAUT is a tool for solving differential equations, difference equations, delay equations, functional equations, boundary value problems, and stochastic equations. It evolved from a chapter written by John Rinzel and me on the qualitative theory of nerve membranes and eventually became a commercial product for MSDOS computers called PHASEPLANE. It is now available as a program running under X11 and Windows. The code brings together a number of useful algorithms and is extremely portable. All the graphics and interface are written completely in Xlib which explains the somewhat idiosyncratic and primitive widgets interface. XPP contains the code for the popular bifurcation program, AUTO . Thus, you can switch back and forth between XPP and AUTO, using the values of one program in the other and vice-versa. I have put a ``friendly'' face on AUTO as well. You do not need to know much about it to play around with it. XPP has the capabilities for handling up to 590 differential equations. There are over a dozen solvers including several for stiff systems, a solver for integral equations and a symplectic solver. Up to 10 graphics windows can be visible at once and a variety of color combinations is supported. PostScript output is supported as well as GIF and animator GIF movies Post processing is easy and includes the ability to make histograms, FFTs and applying functions to columns of your data. Equilibria and linear stability as well as one-dimensional invariant sets can be computed. Nullclines and flow fields aid in the qualitative understanding of two-dimensional models. Poincare maps and equations on cylinders and tori are also supported. Some useful averaging theory tricks and various methods for dealing with coupled oscillators are included primarily because that is what I do for a living. Equations with Dirac delta functions are allowable. I have added an animation package that allows you to create animated versions of your simulations, such as a little pendulum moving back and forth or lamprey swimming. See toys! for examples. There is a curve-fitter based on the Marquardt-Levenberg algorithm which lets you fit data points to the solutions to dynamical systems. It is possible to automatically generate "movies'' of three-dimensional views of attractors or parametric changes in the attractor as some parameters vary. Dynamically link to external subroutines XPP has been successfully compiled on a SPARC II under OpenLook, a SPARC 1.5 running generic X, a NeXT running X11R4, a DEC 5000, a PC using Linux or Windows, and SGI and an HP 730. It also runs under Win95/NT/98 if you have an X-Server. I cannot vouch for other platforms but it has been compiled on the IBM RS6000. Building XPP requires only the standard C compiler, and Xlib. Look at the any README files that come with the distribution for solutions to common compilation problems.

View all literature mentions

Image Pro Plus (tool)

RRID:SCR_007369

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on July 18,2023. Software package to capture, process, measure, analyze and share images and data.

View all literature mentions

SD (tool)

RRID:RGD_70508

Rattus norvegicus with name SD from RGD.

View all literature mentions