Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 23 papers

Human fetal dermal fibroblast-myeloid cell diversity is characterized by dominance of pro-healing Annexin1-FPR1 signaling.

  • Rajneesh Srivastava‎ et al.
  • iScience‎
  • 2023‎

Fetal skin achieves scarless wound repair. Dermal fibroblasts play a central role in extracellular matrix deposition and scarring outcomes. Both fetal and gingival wound repair share minimal scarring outcomes. We tested the hypothesis that compared to adult skin fibroblasts, human fetal skin fibroblast diversity is unique and partly overlaps with gingival skin fibroblasts. Human fetal skin (FS, n = 3), gingiva (HGG, n = 13), and mature skin (MS, n = 13) were compared at single-cell resolution. Dermal fibroblasts, the most abundant cluster, were examined to establish a connectome with other skin cells. Annexin1-FPR1 signaling pathway was dominant in both FS as well as HGG fibroblasts and related myeloid cells while scanty in MS fibroblasts. Myeloid-specific FPR1-ORF delivered in murine wound edge using tissue nanotransfection (TNT) technology significantly enhanced the quality of healing. Pseudotime analyses identified the co-existence of an HGG fibroblast subset with FPR1high myeloid cells of fetal origin indicating common underlying biological processes.


Elevated histone H3 acetylation is associated with genes involved in T lymphocyte activation and glutamate decarboxylase antibody production in patients with type 1 diabetes.

  • Yanfei Wang‎ et al.
  • Journal of diabetes investigation‎
  • 2019‎

Genetic and epigenetic mechanisms have been implicated in the pathogenesis of type 1 diabetes, and histone acetylation is an epigenetic modification pattern that activates gene transcription. However, the genome-wide histone H3 acetylation in new-onset type 1 diabetes patients has not been well described. Accordingly, we aimed to unveil the genome-wide promoter acetylation profile in CD4+ T lymphocytes from type 1 diabetes patients, especially for those who are glutamate decarboxylase antibody-positive.


Role of miRNA-182 and miRNA-187 as potential biomarkers in prostate cancer and its correlation with the staging of prostate cancer.

  • Brusabhanu Nayak‎ et al.
  • International braz j urol : official journal of the Brazilian Society of Urology‎
  • 2020‎

The microRNAs expression has emerged as a potential biomarker for the diagnosis and prognosis of prostate cancer. This study investigated the expression of miRNA-182 and miRNA-187 in prostate cancer patients and established a correlation between miRNA expression and staging of prostate cancer.


Application of Zebrafish Model in the Suppression of Drug-Induced Cardiac Hypertrophy by Traditional Indian Medicine Yogendra Ras.

  • Acharya Balkrishna‎ et al.
  • Biomolecules‎
  • 2020‎

Zebrafish is an elegant vertebrate employed to model the pathological etiologies of human maladies such as cardiac diseases. Persistent physiological stresses can induce abnormalities in heart functions such as cardiac hypertrophy (CH), which can lead to morbidity and mortality. In the present study, using zebrafish as a study model, efficacy of the traditional Indian Ayurveda medicine "Yogendra Ras" (YDR) was validated in ameliorating drug-induced cardiac hypertrophy. YDR was prepared using traditionally described methods and composed of nano- and micron-sized metal particles. Elemental composition analysis of YDR showed the presence of mainly Au, Sn, and Hg. Cardiac hypertrophy was induced in the zebrafish following a pretreatment with erythromycin (ERY), and the onset and reconciliation of disease by YDR were determined using a treadmill electrocardiogram, heart anatomy analysis, C-reactive protein release, and platelet aggregation time-analysis. YDR treatment of CH-induced zebrafish showed comparable results with the Standard-of-care drug, verapamil, tested in parallel. Under in-vitro conditions, treatment of isoproterenol (ISP)-stimulated murine cardiomyocytes (H9C2) with YDR resulted in the suppression of drug-stimulated biomarkers of oxidative stress: COX-2, NOX-2, NOX-4, ANF, troponin-I, -T, and cardiolipin. Taken together, zebrafish showed a strong disposition as a model for studying the efficacy of Ayurvedic medicines towards drug-induced cardiopathies. YDR provided strong evidence for its capability in modulating drug-induced CH through the restoration of redox homeostasis and exhibited potential as a viable complementary therapy.


Electroceutical fabric lowers zeta potential and eradicates coronavirus infectivity upon contact.

  • Subhadip Ghatak‎ et al.
  • Scientific reports‎
  • 2021‎

Coronavirus with intact infectivity attached to PPE surfaces pose significant threat to the spread of COVID-19. We tested the hypothesis that an electroceutical fabric, generating weak potential difference of 0.5 V, disrupts the infectivity of coronavirus upon contact by destabilizing the electrokinetic properties of the virion. Porcine respiratory coronavirus AR310 particles (105) were placed in direct contact with the fabric for 1 or 5 min. Following one minute of contact, zeta potential of the porcine coronavirus was significantly lowered indicating destabilization of its electrokinetic properties. Size-distribution plot showed appearance of aggregation of the virus. Testing of the cytopathic effects of the virus showed eradication of infectivity as quantitatively assessed by PI-calcein and MTT cell viability tests. This work provides the rationale to consider the studied electroceutical fabric, or other materials with comparable property, as material of choice for the development of PPE in the fight against COVID-19.


Pseudomonas Aeruginosa Theft Biofilm Require Host Lipids of Cutaneous Wound.

  • Mithun Sinha‎ et al.
  • Annals of surgery‎
  • 2023‎

This work addressing complexities in wound infection, seeks to test the reliance of bacterial pathogen Pseudomonas aeruginosa (PA) on host skin lipids to form biofilm with pathological consequences.


Adult skin fibroblast state change in murine wound healing.

  • Fatma Z Gharbia‎ et al.
  • Scientific reports‎
  • 2023‎

Wound healing is a well-organized dynamic process involving coordinated consecutive phases: homeostasis, inflammation, proliferation and resolution. Fibroblasts play major roles in skin wound healing such as in wound contraction and release of growth factors which are of importance in angiogenesis and tissue remodeling. Abnormal fibroblast phenotypes have been identified in patients with chronic wounds. In this work, we analyzed scRNA-seq datasets of normal and wounded skin from mice at day 4 post-wound to investigate fibroblast heterogeneity during the proliferative phase of wound healing. Compositional analysis revealed a specific subset of fibroblast (cluster 3) that primarily increased in wounded skin (14%) compared to normal skin (3.9%). This subset was characterized by a gene signature marked by the plasma membrane proteins Sfrp2 + Sfrp4 + Sfrp1 + and the transcription factors Ebf1 + Prrx1 + Maged1 + . Differential gene expression and enrichment analysis identified epithelial to mesenchymal transition (EMT) and angiogenesis to be upregulated in the emerging subset of fibroblasts of the wounded skin. Using two other datasets for murine wounded skin confirmed the increase in cluster 3-like fibroblasts at days 2, 7 and 14 post-wounding with a peak at day 7. By performing a similarity check between the differential gene expression profile between wounded and normal skin for this emerging fibroblast subset with drug signature from the ConnectivityMap database, we identified drugs capable of mimicking the observed gene expression change in fibroblasts during wound healing. TTNPB, verteprofin and nicotinic acid were identified as candidate drugs capable of inducing fibroblast gene expression profile necessary for wound healing. On the other hand, methocarbamol, ifosfamide and penbutolol were recognized to antagonize the identified fibroblast differential expression profile during wound healing which might cause delay in wound healing. Taken together, analysis of murine transcriptomic skin wound healing datasets suggested a subset of fibroblasts capable of inducing EMT and further inferred drugs that might be tested as potential candidates to induce wound closure.


Inducible miR-1224 silences cerebrovascular Serpine1 and restores blood flow to the stroke-affected site of the brain.

  • Ravichand Palakurti‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2023‎

The α-tocotrienol (TCT) form of natural vitamin E is more potent than the better known α-tocopherol against stroke. Angiographic studies of canine stroke have revealed beneficial cerebrovascular effects of TCT. This work seeks to understand the molecular basis of such effect. In mice, TCT supplementation improved perfusion at the stroke-affected site by inducing miR-1224. miRNA profiling of a laser-capture-microdissected stroke-affected brain site identified miR-1224 as the only vascular miR induced. Lentiviral knockdown of miR-1224 significantly blunted the otherwise beneficial effects of TCT on stroke outcomes. Studies on primary brain microvascular endothelial cells revealed direct angiogenic properties of miR-1224. In mice not treated with TCT, advance stereotaxic delivery of an miR-1224 mimic to the stroke site markedly improved stroke outcomes. Mechanistic studies identified Serpine1 as a target of miR-1224. Downregulation of Serpine1 augmented the angiogenic response of the miR-1224 mimic in the brain endothelial cells. The inhibition of Serpine1, by dietary TCT and pharmacologically, increased cerebrovascular blood flow at the stroke-affected site and protected against stroke. This work assigns Serpine1, otherwise known to be of critical significance in stroke, a cerebrovascular function that worsens stroke outcomes. miR-1224-dependent inhibition of Serpine1 can be achieved by dietary TCT as well as by the small-molecule inhibitor TM5441.


Sex as Biological Variable in Cardiac Mitochondrial Bioenergetic Responses to Acute Stress.

  • Susan R Scott‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Cardiac dysfunction/damage following trauma, shock, sepsis, and ischemia impacts clinical outcomes. Acute inflammation and oxidative stress triggered by these injuries impair mitochondria, which are critical to maintaining cardiac function. Despite sex dimorphisms in consequences of these injuries, it is unclear whether mitochondrial bioenergetic responses to inflammation/oxidative stress are sex-dependent. We hypothesized that sex disparity in mitochondrial bioenergetics following TNFα or H2O2 exposure is responsible for reported sex differences in cardiac damage/dysfunction. Methods and Results: Cardiomyocytes isolated from age-matched adult male and female mice were subjected to 1 h TNFα or H2O2 challenge, followed by detection of mitochondrial respiration capacity using the Seahorse XF96 Cell Mito Stress Test. Mitochondrial membrane potential (ΔΨm) was analyzed using JC-1 in TNFα-challenged cardiomyocytes. We found that cardiomyocytes isolated from female mice displayed a better mitochondrial bioenergetic response to TNFα or H2O2 than those isolated from male mice did. TNFα decreased ΔΨm in cardiomyocytes isolated from males but not from females. 17β-estradiol (E2) treatment improved mitochondrial metabolic function in cardiomyocytes from male mice subjected to TNFα or H2O2 treatment. Conclusions: Cardiomyocyte mitochondria from female mice were more resistant to acute stress than those from males. The female sex hormone E2 treatment protected cardiac mitochondria against acute inflammatory and oxidative stress.


Lysosomal acid lipase, CSF1R, and PD-L1 determine functions of CD11c+ myeloid-derived suppressor cells.

  • Ting Zhao‎ et al.
  • JCI insight‎
  • 2022‎

Lysosomal acid lipase (LAL) is a key enzyme in the metabolic pathway of neutral lipids. In the blood of LAL-deficient (Lal-/-) mice, increased CD11c+ cells were accompanied by upregulated programmed cell death ligand 1 (PD-L1) expression. Single-cell RNA sequencing of Lal-/- CD11c+ cells identified 2 distinctive clusters with a major metabolic shift toward glucose utilization and reactive oxygen species overproduction. Pharmacologically blocking pyruvate dehydrogenase in glycolysis not only reduced CD11c+ cells and their PD-L1 expression but also reversed their capabilities of T cell suppression and tumor growth stimulation. Colony-stimulating factor 1 receptor (CSF1R) played an essential role in controlling Lal-/- CD11c+ cell homeostasis and function and PD-L1 expression. Pharmacological inhibition of LAL activity increased CD11c, PD-L1, and CSF1R levels in both normal murine myeloid cells and human blood cells. Tumor-bearing mice and human patients with non-small cell lung cancer also showed CD11c+ cell expansion with PD-L1 and CSF1R upregulation and immunosuppression. There were positive correlations among CD11c, PD-L1, and CSF1R expression and negative correlations with LAL expression in patients with lung cancer or melanoma using The Cancer Genome Atlas database and patient samples. Therefore, CD11c+ cells switched their functions to immune suppression and tumor growth stimulation through CSF1R/PD-L1 upregulation and metabolic reprogramming.


Comparative Characterization of Cardiac Development Specific microRNAs: Fetal Regulators for Future.

  • Yashika Rustagi‎ et al.
  • PloS one‎
  • 2015‎

MicroRNAs (miRNAs) are small, conserved RNAs known to regulate several biological processes by influencing gene expression in eukaryotes. The implication of miRNAs as another player of regulatory layers during heart development and diseases has recently been explored. However, there is no study which elucidates the profiling of miRNAs during development of heart till date. Very limited miRNAs have been reported to date in cardiac context. In addition, integration of large scale experimental data with computational and comparative approaches remains an unsolved challenge.The present study was designed to identify the microRNAs implicated in heart development using next generation sequencing, bioinformatics and experimental approaches. We sequenced six small RNA libraries prepared from different developmental stages of the heart using chicken as a model system to produce millions of short sequence reads. We detected 353 known and 703 novel miRNAs involved in heart development. Out of total 1056 microRNAs identified, 32.7% of total dataset of known microRNAs displayed differential expression whereas seven well studied microRNAs namely let-7, miR-140, miR-181, miR-30, miR-205, miR-103 and miR-22 were found to be conserved throughout the heart development. The 3'UTR sequences of genes were screened from Gallus gallus genome for potential microRNA targets. The target mRNAs were appeared to be enriched with genes related to cell cycle, apoptosis, signaling pathways, extracellular remodeling, metabolism, chromatin remodeling and transcriptional regulators. Our study presents the first comprehensive overview of microRNA profiling during heart development and prediction of possible cardiac specific targets and has a big potential in future to develop microRNA based therapeutics against cardiac pathologies where fetal gene re-expression is witnessed in adult heart.


Urolithin A augments angiogenic pathways in skeletal muscle by bolstering NAD+ and SIRT1.

  • Nandini Ghosh‎ et al.
  • Scientific reports‎
  • 2020‎

Urolithin A (UA) is a natural compound that is known to improve muscle function. In this work we sought to evaluate the effect of UA on muscle angiogenesis and identify the underlying molecular mechanisms. C57BL/6 mice were administered with UA (10 mg/body weight) for 12-16 weeks. ATP levels and NAD+ levels were measured using in vivo 31P NMR and HPLC, respectively. UA significantly increased ATP and NAD+ levels in mice skeletal muscle. Unbiased transcriptomics analysis followed by Ingenuity Pathway Analysis (IPA) revealed upregulation of angiogenic pathways upon UA supplementation in murine muscle. The expression of the differentially regulated genes were validated using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). Angiogenic markers such as VEGFA and CDH5 which were blunted in skeletal muscles of 28 week old mice were found to be upregulated upon UA supplementation. Such augmentation of skeletal muscle vascularization was found to be bolstered via Silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC-1α) pathway. Inhibition of SIRT1 by selisistat EX527 blunted UA-induced angiogenic markers in C2C12 cells. Thus this work provides maiden evidence demonstrating that UA supplementation bolsters skeletal muscle ATP and NAD+ levels causing upregulated angiogenic pathways via a SIRT1-PGC-1α pathway.


Bone marrow- or adipose-mesenchymal stromal cell secretome preserves myocardial transcriptome profile and ameliorates cardiac damage following ex vivo cold storage.

  • Susan R Scott‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2022‎

Heart transplantation, a life-saving approach for patients with end-stage heart disease, is limited by shortage of donor organs. While prolonged storage provides more organs, it increases the extent of ischemia. Therefore, we seek to understand molecular mechanisms underlying pathophysiological changes of donor hearts during prolonged storage. Additionally, considering mesenchymal stromal cell (MSC)-derived paracrine protection, we aim to test if MSC secretome preserves myocardial transcriptome profile and whether MSC secretome from a certain source provides the optimal protection in donor hearts during cold storage.


Genome-wide DNA hypermethylation opposes healing in patients with chronic wounds by impairing epithelial-mesenchymal transition.

  • Kanhaiya Singh‎ et al.
  • The Journal of clinical investigation‎
  • 2022‎

An extreme chronic wound tissue microenvironment causes epigenetic gene silencing. An unbiased whole-genome methylome was studied in the wound-edge tissue of patients with chronic wounds. A total of 4,689 differentially methylated regions (DMRs) were identified in chronic wound-edge skin compared with unwounded human skin. Hypermethylation was more frequently observed (3,661 DMRs) in the chronic wound-edge tissue compared with hypomethylation (1,028 DMRs). Twenty-six hypermethylated DMRs were involved in epithelial-mesenchymal transition (EMT). Bisulfite sequencing validated hypermethylation of a predicted specific upstream regulator TP53. RNA-Seq analysis was performed to qualify findings from methylome analysis. Analysis of the downregulated genes identified the TP53 signaling pathway as being significantly silenced. Direct comparison of hypermethylation and downregulated genes identified 4 genes, ADAM17, NOTCH, TWIST1, and SMURF1, that functionally represent the EMT pathway. Single-cell RNA-Seq studies revealed that these effects on gene expression were limited to the keratinocyte cell compartment. Experimental murine studies established that tissue ischemia potently induces wound-edge gene methylation and that 5'-azacytidine, inhibitor of methylation, improved wound closure. To specifically address the significance of TP53 methylation, keratinocyte-specific editing of TP53 methylation at the wound edge was achieved by a tissue nanotransfection-based CRISPR/dCas9 approach. This work identified that reversal of methylation-dependent keratinocyte gene silencing represents a productive therapeutic strategy to improve wound closure.


Identification of a physiologic vasculogenic fibroblast state to achieve tissue repair.

  • Durba Pal‎ et al.
  • Nature communications‎
  • 2023‎

Tissue injury to skin diminishes miR-200b in dermal fibroblasts. Fibroblasts are widely reported to directly reprogram into endothelial-like cells and we hypothesized that miR-200b inhibition may cause such changes. We transfected human dermal fibroblasts with anti-miR-200b oligonucleotide, then using single cell RNA sequencing, identified emergence of a vasculogenic subset with a distinct fibroblast transcriptome and demonstrated blood vessel forming function in vivo. Anti-miR-200b delivery to murine injury sites likewise enhanced tissue perfusion, wound closure, and vasculogenic fibroblast contribution to perfused vessels in a FLI1 dependent manner. Vasculogenic fibroblast subset emergence was blunted in delayed healing wounds of diabetic animals but, topical tissue nanotransfection of a single anti-miR-200b oligonucleotide was sufficient to restore FLI1 expression, vasculogenic fibroblast emergence, tissue perfusion, and wound healing. Augmenting a physiologic tissue injury adaptive response mechanism that produces a vasculogenic fibroblast state change opens new avenues for therapeutic tissue vascularization of ischemic wounds.


Collagenase-based wound debridement agent induces extracellular matrix supporting phenotype in macrophages.

  • Pradipta Banerjee‎ et al.
  • Scientific reports‎
  • 2024‎

Macrophages assume diverse phenotypes and functions in response to cues from the microenvironment. Earlier we reported an anti-inflammatory effect of Collagenase Santyl® Ointment (CSO) and the active constituent of CSO (CS-API) on wound macrophages in resolving wound inflammation indicating roles beyond debridement in wound healing. Building upon our prior finding, this study aimed to understand the phenotypes and subsets of macrophages following treatment with CS-API. scRNA-sequencing was performed on human blood monocyte-derived macrophages (MDM) following treatment with CS-API for 24 h. Unbiased data analysis resulted in the identification of discrete macrophage subsets based on their gene expression profiles. Following CS-API treatment, clusters 3 and 4 displayed enrichment of macrophages with high expression of genes supporting extracellular matrix (ECM) function. IPA analysis identified the TGFβ-1 pathway as a key hub for the CS-API-mediated ECM-supportive phenotype of macrophages. Earlier we reported the physiological conversion of wound-site macrophages to fibroblasts in granulation tissue and impairment of such response in diabetic wounds, leading to compromised ECM and tensile strength. The findings that CSO can augment the physiological conversion of macrophages to fibroblast-like cells carry significant clinical implications. This existing clinical intervention, already employed for wound care, can be readily repurposed to improve the ECM response in chronic wounds.


Epigenetic Modification of MicroRNA-200b Contributes to Diabetic Vasculopathy.

  • Kanhaiya Singh‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2017‎

Hyperglycemia (HG) induces genome-wide cytosine demethylation. Our previous work recognized miR-200b as a critical angiomiR, which must be transiently downregulated to initiate wound angiogenesis. Under HG, miR-200b downregulation is not responsive to injury. Here, we demonstrate that HG may drive vasculopathy by epigenetic modification of a miR promoter. In human microvascular endothelial cells (HMECs), HG also lowered DNA methyltransferases (DNMT-1 and DNMT-3A) and compromised endothelial function as manifested by diminished endothelial nitric oxide (eNOS), lowered LDL uptake, impaired Matrigel tube formation, lower NO production, and compromised VE-cadherin expression. Bisulfite-sequencing documented HG-induced miR-200b promoter hypomethylation in HMECs and diabetic wound-site endothelial cells. In HMECs, HG compromised endothelial function. Methyl donor S-adenosyl-L-methionine (SAM) corrected miR-200b promoter hypomethylaton and rescued endothelial function. In vivo, wound-site administration of SAM to diabetic mice improved wound perfusion by limiting the pathogenic rise of miR-200b. Quantitative stable isotope labeling by amino acids in cell culture (SILAC) proteomics and ingenuity pathway analysis identified HG-induced proteins and principal clusters in HMECs sensitive to the genetic inhibition of miR-200b. This work presents the first evidence of the miR-200b promoter methylation as a critical determinant of diabetic wound angiogenesis.


MicroRNA biogenesis factor DRB1 is a phosphorylation target of mitogen activated protein kinase MPK3 in both rice and Arabidopsis.

  • Badmi Raghuram‎ et al.
  • The FEBS journal‎
  • 2015‎

MicroRNA (miRNA) biogenesis requires AtDRB1 (double-stranded RNA binding protein)/HYL1 (Hyponastic Leaves1) protein for processing and maturation of miRNA precursors. The AtDRB1/HYL1 protein associates with AtDCL1 (Dicer-Like1) and accurately processes primary-miRNAs (pri-mRNAs) first to precursor-miRNAs (pre-miRNAs) and finally to mature miRNAs. The dephosphorylation of AtDRB1/HYL1 protein is very important for the precise processing of miRNA precursors. The monocot model crop plant Oryza sativa encodes four orthologues of AtDRB1/HYL1 protein, the only one encoded by Arabidopsis thaliana. The present study focuses on the functionality of the O. sativa DRBs as the orthologues of AtDRB1/HYL1 by using RNA binding assays and in planta protein-protein interaction analysis. Further, mitogen-activated protein kinase MPK3 is established as the kinase phosphorylating DRB1 protein in both the model plants, O. sativa and Arabidopsis. MicroRNA microarray analysis in atmpk3 and atmpk6 mutants indicate the importance of AtMPK3 in maintaining the level of miRNAs in the plant.


Screening of MicroRNA as potential CardiomiRs in Rattus noveregicus Heart related Dataset.

  • Yashika Rustagi‎ et al.
  • Bioinformation‎
  • 2013‎

MicroRNAs (miRNAs) are the naturally expressed small, 18~25 nts long non-coding single stranded RNAs, which inhibit the translation by interacting with the 3' untranslated region (UTR) of specific mRNA targets or by repression of posttranscriptional modification of mRNAs. MiRNAs are found to regulate the differentiation, development, function and stress responsive growth of cardiac cells. Their role and association with several disease progressions is of interest in recent years. Our interest is to study their role in cardiac hypertrophy (characterized by increased cell size, protein synthesis and reactivation of gene pathways). Therefore, we analyzed their features using a dataset (# ≈1400 #) of potential intronic and 3'UTR targeted miRNAs from known cardiac marker genes. We report 10 uncharacterized miRNAs regulating cardiac marker genes during cardiac hypertrophy and other cardiac diseases.


Toll-like receptor 4 polymorphisms and their haplotypes modulate the risk of developing diabetic retinopathy in type 2 diabetes patients.

  • Kanhaiya Singh‎ et al.
  • Molecular vision‎
  • 2014‎

Persistent inflammation and impaired neovascularization in type 2 diabetes mellitus (T2DM) patients may lead to development of macro- and microvascular complications. Diabetic retinopathy (DR) is one of the secondary microvascular complications of T2DM. Improper activation of the innate immune system may be an important contributor in the pathophysiology of DR. Toll-like receptor 4 (TLR4) is an important mediator of innate immunity, and genetic alterations in TLR4 support inflammation in the hyperglycemic condition. The present work was designed to investigate whether the TLR4 single nucleotide polymorphisms (SNPs) rs4986790, rs4986791, rs10759931, rs1927911, and rs1927914 are associated with DR in a north Indian population.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: