2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 87 papers

Identification and characterization of novel amphioxus microRNAs by Solexa sequencing.

  • Xi Chen‎ et al.
  • Genome biology‎
  • 2009‎

microRNAs (miRNAs) are endogenous small non-coding RNAs that regulate gene expression at the post-transcriptional level. While the number of known human and murine miRNAs is continuously increasing, information regarding miRNAs from other species such as amphioxus remains limited.


Oral administration of Lactobacillus plantarum 299v modulates gene expression in the ileum of pigs: prediction of crosstalk between intestinal immune cells and sub-mucosal adipocytes.

  • Marcel Hulst‎ et al.
  • Genes & nutrition‎
  • 2015‎

To study host-probiotic interactions in parts of the intestine only accessible in humans by surgery (jejunum, ileum and colon), pigs were used as model for humans. Groups of eight 6-week-old pigs were repeatedly orally administered with 5 × 10(12) CFU Lactobacillus plantarum 299v (L. plantarum 299v) or PBS, starting with a single dose followed by three consecutive daily dosings 10 days later. Gene expression was assessed with pooled RNA samples isolated from jejunum, ileum and colon scrapings of the eight pigs per group using Affymetrix porcine microarrays. Comparison of gene expression profiles recorded from L. plantarum 299v-treated pigs with PBS-treated pigs indicated that L. plantarum 299v affected metabolic and immunological processes, particularly in the ileum. A higher expression level of several B cell-specific transcription factors/regulators was observed, suggesting that an influx of B cells from the periphery to the ileum and/or the proliferation of progenitor B cells to IgA-committed plasma cells in the Peyer's patches of the ileum was stimulated. Genes coding for enzymes that metabolize leukotriene B4, 1,25-dihydroxyvitamin D3 and steroids were regulated in the ileum. Bioinformatics analysis predicted that these metabolites may play a role in the crosstalk between intestinal immune cells and sub-mucosal adipocytes. Together with regulation of genes that repress NFKB- and PPARG-mediated transcription, this crosstalk may contribute to tempering of inflammatory reactions. Furthermore, the enzyme adenosine deaminase, responsible for the breakdown of the anti-inflammatory mediator adenosine, was strongly down-regulated in response to L. plantarum 299v. This suggested that L. plantarum 299v-regulated production of adenosine by immune cells like regulatory T cells may also be a mechanism that tempers inflammation in the ileum, and perhaps also in other parts of the pig's body.


Effect of Roux-en-Y gastric bypass surgery on bile acid metabolism in normal and obese diabetic rats.

  • Hina Y Bhutta‎ et al.
  • PloS one‎
  • 2015‎

In addition to classic functions of facilitating hepatobiliary secretion and intestinal absorption of lipophilic nutrients, bile acids (BA) are also endocrine factors and regulate glucose and lipid metabolism. Recent data indicate that antiobesity bariatric procedures e.g. Roux-en-Y gastric bypass surgery (RYGB), which also remit diabetes, increase plasma BAs in humans, leading to the hypothesis that BAs may play a role in diabetes resolution following surgery. To investigate the effect of RYGB on BA physiology and its relationship with glucose homeostasis, we undertook RYGB and SHAM surgery in Zucker diabetic fatty (ZDF) and normoglycemic Sprague Dawley (SD) rats and measured plasma and fecal BA levels, as well as plasma glucose, insulin, Glucagon like peptide 1 (GLP-1) and Peptide YY (PYY), 2 days before and 3, 7, 14 and 28 days after surgery. RYGB decreased body weight and increased plasma GLP-1 in both SD and ZDF rats while decreasing plasma insulin and glucose in ZDF rats starting from the first week. Compared to SHAM groups, both SD-RYGB and ZDF-RYGB groups started to have increases in plasma total BAs in the second week, which might not contribute to early post-surgery metabolic changes. While there was no significant difference in fecal BA excretion between SD-RYGB and SD-SHAM groups, the ZDF-RYGB group had a transient 4.2-fold increase (P<0.001) in 24-hour fecal BA excretion on post-operative day 3 compared to ZDF-SHAM, which paralleled a significant increase in plasma PYY. Ratios of plasma and fecal cholic acid/chenodeoxycholic acid derived BAs were decreased in RYGB groups. In addition, tissue mRNA expression analysis suggested early intestinal BA reabsorption and potentially reduced hepatic cholic acid production in RYGB groups. In summary, we present novel data on RYGB-mediated changes in BA metabolism to further understand the role of BAs in RYGB-induced metabolic effects in humans.


Functional variants in DPYSL2 sequence increase risk of schizophrenia and suggest a link to mTOR signaling.

  • Yaping Liu‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2014‎

Numerous linkage and association studies by our group and others have implicated DPYSL2 at 8p21.2 in schizophrenia. Here we explore DPYSL2 for functional variation that underlies these associations. We sequenced all 14 exons of DPYSL2 as well as 27 conserved noncoding regions at the locus in 137 cases and 151 controls. We identified 120 variants, eight of which we genotyped in an additional 729 cases and 1542 controls. Several were significantly associated with schizophrenia, including a three single-nucleotide polymorphism (SNP) haplotype in the proximal promoter, two SNPs in intron 1, and a polymorphic dinucleotide repeat in the 5'-untranslated region that alters sequences predicted to be involved in translational regulation by mammalian target of rapamycin signaling. The 3-SNP promoter haplotype and the sequence surrounding one of the intron 1 SNPs direct tissue-specific expression in the nervous systems of Zebrafish in a pattern consistent with the two endogenous dpysl2 paralogs. In addition, two SNP haplotypes over the coding exons and 3' end of DPYSL2 showed association with opposing sex-specific risks. These data suggest that these polymorphic, schizophrenia-associated sequences function as regulatory elements for DPYSL2 expression. In transient transfection assays, the high risk allele of the polymorphic dinucleotide repeat diminished reporter expression by 3- to 4-fold. Both the high- and low-risk alleles respond to allosteric mTOR inhibition by rapamycin until, at high drug levels, allelic differences are eliminated. Our results suggest that reduced transcription and mTOR-regulated translation of certain DPYSL2 isoforms increase the risk for schizophrenia.


Unique functions of CHK1 and WEE1 underlie synergistic anti-tumor activity upon pharmacologic inhibition.

  • Amy D Guertin‎ et al.
  • Cancer cell international‎
  • 2012‎

Inhibition of kinases involved in the DNA damage response sensitizes cells to genotoxic agents by abrogating checkpoint-induced cell cycle arrest. CHK1 and WEE1 act in a pathway upstream of CDK1 to inhibit cell cycle progression in response to damaged DNA. Therapeutic targeting of either CHK1 or WEE1, in combination with chemotherapy, is under clinical evaluation. These studies examine the overlap and potential for synergy when CHK1 and WEE1 are inhibited in cancer cell models.


Overexpression of PRL7D1 in Leydig Cells Causes Male Reproductive Dysfunction in Mice.

  • Yaping Liu‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

Prolactin family 7, subfamily d, member 1 (PRL7D1) is found in mouse placenta. Our recent work showed that PRL7D1 is also present in mouse testis Leydig cells, and the expression of PRL7D1 in the testis exhibits an age-related increase. In the present study, we generated transgenic mice with Leydig cell-specific PRL7D1 overexpression to explore its function during male reproduction. Prl7d1 male mice exhibited subfertility as reflected by reduced sperm counts and litter sizes. The testes from Prl7d1 transgenic mice appeared histologically normal, but the frequency of apoptotic germ cells was increased. Prl7d1 transgenic mice also had lower testosterone concentrations than wild-type mice. Mechanistic studies revealed that Prl7d1 transgenic mice have defects in the testicular expression of steroidogenic acute regulatory protein (STAR) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase cluster (HSD3B). Further studies revealed that PRL7D1 overexpression affected the expression of transferrin (TF) in Sertoli cells. These results suggest that PRL7D1 overexpression could lead to increased germ cell apoptosis and exert an inhibitory effect on testosterone production in Leydig cells by reducing the expression of certain steroidogenic-related genes. In addition, PRL7D1 appears to have important roles in the function of Sertoli cells, which, in turn, affects male fertility. We conclude that the expression level of PRL7D1 is associated with the reproductive function of male mice.


A genome-wide siRNA screen to identify modulators of insulin sensitivity and gluconeogenesis.

  • Ruojing Yang‎ et al.
  • PloS one‎
  • 2012‎

Hepatic insulin resistance impairs insulin's ability to suppress hepatic glucose production (HGP) and contributes to the development of type 2 diabetes (T2D). Although the interests to discover novel genes that modulate insulin sensitivity and HGP are high, it remains challenging to have a human cell based system to identify novel genes.


Joint profiling of DNA methylation and chromatin architecture in single cells.

  • Guoqiang Li‎ et al.
  • Nature methods‎
  • 2019‎

We report a molecular assay, Methyl-HiC, that can simultaneously capture the chromosome conformation and DNA methylome in a cell. Methyl-HiC reveals coordinated DNA methylation status between distal genomic segments that are in spatial proximity in the nucleus, and delineates heterogeneity of both the chromatin architecture and DNA methylome in a mixed population. It enables simultaneous characterization of cell-type-specific chromatin organization and epigenome in complex tissues.


Target sequencing of 307 deafness genes identifies candidate genes implicated in microtia.

  • Pu Wang‎ et al.
  • Oncotarget‎
  • 2017‎

Microtia is a congenital malformation of the external ear caused by genetic and/or environmental factors. However, no causal genetic mutations have been identified in isolated microtia patients. In this study, we utilized targeted genomic capturing combined with next-generation sequencing to screen for mutations in 307 deafness genes in 32 microtia patients. Forty-two rare heterozygous mutations in 25 genes, including 22 novel mutations in 24 isolated unilateral microtia cases were identified. Pathway analysis found five pathways especially focal adhesion pathway and ECM-receptor interaction pathway were significantly associated with microtia. The low-frequency variants association study was used and highlighted several strong candidate genes MUC4, MUC6, COL4A4, MYO7A, AKAP12, COL11A1, DSPP, ESPN, GPR98, PCDH15, BSN, CACNA1D, TPRN, and USH1C for microtia (P = 2.51 × 10-4). Among these genes, COL4A4 and COL11A1 may lead to microtia through focal adhesion pathway and ECM-receptor interaction pathway which are connected to the downstream Wnt signaling pathway. The present results indicate that certain genes may affect both external/middle and inner ear development, and demonstrate the benefits of using a capture array in microtia patients.


Clinical and genetic characteristics of chinese patients with Birt-Hogg-Dubé syndrome.

  • Yaping Liu‎ et al.
  • Orphanet journal of rare diseases‎
  • 2017‎

Birt-Hogg-Dubé syndrome (BHD) is an autosomal dominant disorder, the main manifestations of which are fibrofolliculomas, renal tumors, pulmonary cysts and recurrent pneumothorax. The known causative gene for BHD syndrome is the folliculin (FLCN) gene on chromosome 17p11.2. Studies of the FLCN mutation for BHD syndrome are less prevalent in Chinese populations than in Caucasian populations. Our study aims to investigate the genotype spectrum in a group of Chinese patients with BHD.


Anterograde monosynaptic transneuronal tracers derived from herpes simplex virus 1 strain H129.

  • Wen-Bo Zeng‎ et al.
  • Molecular neurodegeneration‎
  • 2017‎

Herpes simplex virus type 1 strain 129 (H129) has represented a promising anterograde neuronal circuit tracing tool, which complements the existing retrograde tracers. However, the current H129 derived tracers are multisynaptic, neither bright enough to label the details of neurons nor capable of determining direct projection targets as monosynaptic tracer.


STAT3 Regulates miR-384 Transcription During Th17 Polarization.

  • Jingjing Han‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2019‎

MicroRNAs are powerful regulators of gene expression in physiological and pathological conditions. We previously showed that the dysregulation of miR-384 resulted in a T helper cell 17 (Th17) imbalance and contributed to the pathogenesis of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. In this study, we evaluated the molecular mechanisms underlying the abnormal increase in miR-384. We did not detect typical CpG islands in the Mir384 promoter. Based on a bioinformatics analysis of the promoter, we identified three conserved transcription factor binding regions (RI, RII, and RIII), two of which (RII and RIII) were cis-regulatory elements. Furthermore, we showed that signal transducer and activator of transcription 3 (STAT3) bound to specific sites in RII and RIII based on chromatin immunoprecipitation, electrophoretic mobility shift assays, and site-specific mutagenesis. During Th17 polarization in vitro, STAT3 activation up-regulated miR-384, while a STAT3 phosphorylation inhibitor decreased miR-384 levels and reduced the percentage of IL-17+ cells, IL-17 secretion, and expression of the Th17 lineage marker Rorγt. Moreover, the simultaneous inhibition of STAT3 and miR-384 could further block Th17 polarization. These results indicate that STAT3, rather than DNA methylation, contributes to the regulation of miR-384 during Th17 polarization.


Genotypic characteristics of Chinese patients with BHD syndrome and functional analysis of FLCN variants.

  • Keqiang Liu‎ et al.
  • Orphanet journal of rare diseases‎
  • 2019‎

Birt-Hogg-Dubé syndrome (BHDS) is an autosomal dominant disease featured by lung cysts, spontaneous pneumothorax, fibrofolliculomas and renal tumors. The causative gene for BHDS is the folliculin (FLCN) gene and more than 200 mutations have been reported in FLCN, mostly truncating mutations. The aim of this study is to better characterize the clinical features and mutation spectrum of Chinese BHDS patients and to systematically evaluate the effects of non-truncating mutations on mRNA splicing pattern.


Clinical and genetic characteristics of cystic fibrosis in CHINESE patients: a systemic review of reported cases.

  • Xiaobei Guo‎ et al.
  • Orphanet journal of rare diseases‎
  • 2018‎

Cystic fibrosis (CF) is a rare disease most commonly seen in Caucasians. Only a few Chinese CF patients have been described in literature, taking into account the large population of China. In this systematic review, we collected the clinical and genetic information of 71 Chinese CF patients based on all available data. Compared with Caucasians, Chinese CF patients often present atypical symptoms, mainly displaying symptoms of pulmonary infection with fewer digestive symptoms. An ethnicity-specific CFTR variant spectrum was also observed in CF patients of Chinese origin, with p.Gly970Asp as the most common mutation while p.Phe508del, the most common pathogenic mutation in CF patients of Caucasian origin, is rare, suggesting the necessity of a Chinese-specific CFTR variant screening panel. Besides, multiplex ligation-dependent probe amplification analysis should be routinely considered, especially for those with unidentified mutations. Potential under-diagnosis of CF in Chinese patients might be caused by a combination of atypical clinical features and genetic heterogeneity in Chinese CF patients, the inaccessibility of sweat and genetic testing facilities, and the one-child policy in China. With the approval of promising small molecule correctors and potentiators, molecular characterization of Chinese-specific CFTR mutations will help to realize more precise treatment for Chinese CF patients.


Anneslea fragrans Wall. ameliorates ulcerative colitis via inhibiting NF-κB and MAPK activation and mediating intestinal barrier integrity.

  • Xiaocui Deng‎ et al.
  • Journal of ethnopharmacology‎
  • 2021‎

Anneslea fragrans Wall. is traditionally used as a folk medicine in treating indigestion, fever, dysentery, diarrhea, and liver inflammation in China, Vietnam and Cambodia. However, its anti-inflammatory activity and mechanism under a safety therapeutic dose as well as the main chemical components have not yet been fully investigated.


Effects of ultrasonic treatment on ovomucin: Structure, functional properties and bioactivity.

  • Qi Xu‎ et al.
  • Ultrasonics sonochemistry‎
  • 2022‎

The effects of ultrasonic treatment on the structure, functional properties and bioactivity of Ovomucin (OVM) were investigated in this study. Ultrasonic treatment could significantly enhance OVM solubility without destroying protein molecules. The secondary structure changes, including β-sheet reduction and random coil increase, indicate more disorder in OVM structure. After ultrasonic treatment, the OVM molecule was unfolded partially, resulting in the exposure of hydrophobic regions. The changes in OVM molecules led to an increase in intrinsic fluorescence and surface hydrophobicity. By detecting the particle size of protein solution, it was confirmed that ultrasonic treatment disassembled the OVM aggregations causing a smaller particle size. Field emission scanning electron microscopy (FE-SEM) images showed that ultrasonic cavitation significantly reduced the tendency of OVM to form stacked lamellar structure. Those changes in structure resulted in the improvement of foaming, emulsification and antioxidant capacity of OVM. Meanwhile, the detection results of ELISA showed that ultrasonic treatment did not change the biological activity of OVM. These results suggested that the relatively gentle ultrasound treatment could be utilized as a potential approach to modify OVM for property improvement.


Elsholtzia bodinieri Vaniot Ameliorated Acute Lung Injury by NQO1, BCL2 and PTGS2 In Silico and In Vitro Analyses.

  • Jin Sun‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Acute lung injury (ALI) is a clinical respiratory disease caused by various factors, which lacks effective pharmacotherapy to reduce the mortality rate. Elsholtzia bodinieri Vaniot is an annual herbaceous plant used as a traditional herbal tea and folk medicine. Here we used bioinformatic databases and software to explore and analyze the potential key genes in ALI regulated by E. bodinieri Vaniot, including B cell leukemia/lymphoma 2 (Bcl2), prostaglandin-endoperoxide synthase 2 (Ptgs2) and NAD(P)H dehydrogenase, quinone 1 (Nqo1). In an inflammatory cells model, we verified bioinformatics results, and further mechanistic analysis showed that methanol extract of E. bodinieri Vaniot (EBE) could alleviate oxidative stress by upregulating the expression of NQO1, suppress pyroptosis by upregulating the expression of BCL2, and attenuate inflammation by downregulating the expression of PTGS2. In sum, our results demonstrated that EBE treatment could alleviate oxidative stress, suppress pyroptosis and attenuate inflammation by regulating NQO1, BCL2 and PTGS2 in a cells model, and E. bodinieri Vaniot might be a promising source for functional food or as a therapeutic agent.


Fucoidan ameliorates glucose metabolism by the improvement of intestinal barrier and inflammatory damage in type 2 diabetic rats.

  • Yaping Liu‎ et al.
  • International journal of biological macromolecules‎
  • 2022‎

It has been reported that fucoidan possesses anti-diabetic activities by inhibiting α-glucosidase activity, improving β-cell dysfunction, and enhancing insulin sensitivity. However, as a macromolecular carbohydrate, fucoidan is rarely absorbed and indigestible in gastrointestinal tract. The study aimed to explore whether the fucoidan can regulate glucose metabolism by improving intestinal barrier and inflammation in type 2 diabetes mellitus (T2DM) rats. A high-fat diet combined with streptozotocin was used to induce T2DM rats. Different doses of fucoidan (50, 100 and 200 mg/kg) were administered respectively by lavage to T2DM rats for 8 weeks and saline was given to controls. The results showed that in addition to hyperglycemia and hyperlipidemia, T2DM rats were also characterized by increased intestinal permeability and proinflammatory cytokines. Notably, fucoidan reduced fasting blood glucose and insulin resistance index along with alleviated the accumulation of proinflammatory cytokines in T2DM rats. Furthermore, fucoidan repaired the intestinal barrier function, which was accompanied by the up-regulation of tight junction proteins and the improvement of intestinal inflammation via inhibiting TLR4/NF-κB signaling. Meanwhile, fucoidan also mitigated the liver damage, and alleviated insulin resistance by activating PI3K/AKT signaling. Collectively, these findings supported the potential of fucoidan to be used as a functional ingredient to prevent T2DM.


Chitosan‑sodium alginate-collagen/gelatin three-dimensional edible scaffolds for building a structured model for cell cultured meat.

  • Linzi Li‎ et al.
  • International journal of biological macromolecules‎
  • 2022‎

Cell cultured meat (CCM) production is an innovative technology that does not depend on livestock farming practices to produce meat. The construction of structured CCM requires a three-dimensional (3D) scaffold to mimic the extracellular matrix to provide mechanical support for the cells. Furthermore, the 3D scaffolds should be edible and have good biocompatibility and tissue-like texture. Here, we demonstrated a 3D edible chitosan‑sodium alginate-collagen/gelatin (CS-SA-Col/Gel) scaffold that can support the adhesion and proliferation of porcine skeletal muscle satellite cells, culminating in the construction of a structured CCM model. The 3D edible scaffolds were prepared by freeze-drying using electrostatic interactions between chitosan and sodium alginate. Initially, the physicochemical properties and structural characteristics of different scaffolds were explored, and the biocompatibility of the scaffolds was evaluated using the C2C12 cell model. The results showed that the 2-CS-SA-Col1-Gel scaffold provided stable mechanical support and abundant adhesion sites for the cells. Subsequently, we inoculated porcine skeletal muscle satellite cells on the 2-CS-SA-Col1-Gel scaffold and induced differentiation for a total of 14 days. Immunofluorescence staining results showed cytoskeleton formation, and Western blotting (WB) and qPCR results showed upregulation of skeletal proteins and myogenic genes. Ultimately, the structured CCM model has similar textural properties (chewiness, springiness and resilience) and appearance to those of fresh pork. In conclusion, the method of constructing 3D edible scaffolds to prepare structured CCM models exhibits the potential to produce cell cultured meat.


Mutations in CFAP47, a previously reported MMAF causative gene, also contribute to the respiratory defects in patients with PCD.

  • Haijun Ge‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2023‎

Primary ciliary dyskinesia (PCD) is a genetic ciliopathy characterized by dysfunction of motile cilia. Currently, approximately 50 causative genes accounting for 60%-70% of all PCD cases have been identified in PCD-affected individuals, but the etiology in approximately 30%-40% of PCD cases remains unknown.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: