2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Changes of Bacterial Communities in Response to Prolonged Hydrodynamic Disturbances in the Eutrophic Water-Sediment Systems.

  • Haomiao Cheng‎ et al.
  • International journal of environmental research and public health‎
  • 2019‎

The effects of hydrodynamic disturbances on the bacterial communities in eutrophic aquatic environments remain poorly understood, despite their importance to ecological evaluation and remediation. This study investigated the evolution of bacterial communities in the water-sediment systems under the influence of three typical velocity conditions with the timescale of 5 weeks. The results demonstrated that higher bacterial diversity and notable differences were detected in sediment compared to water using the 16S rRNA gene sequencing. The phyla Firmicutes and γ-Proteobacteria survived better in both water and sediment under stronger water disturbances. Their relative abundance peaked at 36.0%, 33.2% in water and 38.0%, 43.6% in sediment, respectively, while the phylum Actinobacteria in water had the opposite tendency. Its relative abundance grew rapidly in static control (SC) and peaked at 44.8%, and it almost disappeared in disturbance conditions. These phenomena were caused by the proliferation of genus Exiguobacterium (belonging to Firmicutes), Citrobacter, Acinetobacter, Pseudomonas (belonging to γ-Proteobacteria), and hgcI_clade (belonging to Actinobacteria). The nonmetric multidimensional scaling (NMDS) and Venn analysis also revealed significantly different evolutionary trend in the three water-sediment systems. It was most likely caused by the changes of geochemical characteristics (dissolved oxygen (DO) and nutrients). This kind of study can provide helpful information for ecological assessment and remediation strategy in eutrophic aquatic environments.


Changes in Microeukaryotic Communities in the Grand Canal of China in Response to Floods.

  • Wei Cai‎ et al.
  • International journal of environmental research and public health‎
  • 2022‎

Floods are frequent natural disasters and could have serious impacts on aquatic environments. Eukaryotic communities in artificial canals influenced by floods remain largely unexplored. This study investigated the spatiotemporal variabilities among eukaryotes in response to floods in the Grand Canal, China. Generally, 781,078 sequence reads were obtained from 18S rRNA gene sequencing, with 304,721 and 476,357 sequence reads detected before and after flooding, respectively. Sediment samples collected after the floods exhibited a higher degree of richness and biodiversity but lower evenness than those before the floods. The eukaryotic communities changed from Fungi-dominated before floods to Stramenopile-dominated after floods. The spatial turnover of various species was the main contributor to the longitudinal construction of eukaryotes both before the floods (βSIM = 0.7054) and after the floods (βSIM = 0.6858). Some eukaryotic groups responded strongly to floods and might pose unpredictable risks to human health and environmental health. For example, Pezizomycetes, Catenulida, Glomeromycetes, Ellipura, etc. disappeared after the floods. Conversely, Lepocinclis, Synurale, Hibberdiales, Acineta, Diptera, and Rhinosporidium were all frequently detected after the floods, but not prior to the floods. Functional analyses revealed amino acid metabolism, carbohydrate metabolism, translation, and energy metabolism as the main metabolic pathways, predicting great potential for these processes in the Grand Canal.


Association between Phthalate Metabolites and Risk of Endometriosis: A Meta-Analysis.

  • Wei Cai‎ et al.
  • International journal of environmental research and public health‎
  • 2019‎

Objective: The association between phthalates and endometriosis risk is inconclusive. This meta-analysis aims to evaluate the association between five different phthalate metabolites and endometriosis, based on current evidence. Methods: The literature included PubMed, WOS (web of science), and EMBASE, published until 3 March 2019. We selected the related literature and evaluated the relationship between phthalates exposure and endometriosis risk. All statistical analyses were conducted with STATA version 12.0. Results: Data from eight studies were used in this review. The results of this analysis showed that mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) exposure was potentially associated with endometriosis (OR = 1.246, 95% CI = 1.003-1.549). We have not found positive results in mono(2-ethylhexyl) phthalate (MEHP), monoethyl phthalate (MEP), monobenzyl phthalate (MBzP) and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) analyses (MEHP: OR = 1.089, 95% CI = 0.858-1.383; MEP: OR = 1.073, 95% CI = 0.899-1.282; MBzP: OR = 0.976, 95% CI = 0.810-1.176; MEOHP: OR = 1.282, 95% CI = 0.874-1.881). In subgroup analyses for regions, the associations were significant between MEHHP and endometriosis in Asia (OR = 1.786, 95% CI = 1.005-3.172, I² = 0%), but not in USA (OR = 1.170, 95% CI = 0.949-1.442, I² = 45.6%). Conclusions: Our findings suggested a potential statistical association between MEHHP exposure and endometriosis, particularly, the exposure of MEHHP might be a potential risk for women with endometriosis in Asia. However, positive associations between the other four Phthalate acid esters (PAEs) and endometriosis was not found. Given the weak strength of the results, well-designed cohort studies, with large sample sizes, should be performed in future.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: