Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 214 papers

A high-throughput neutralizing assay for antibodies and sera against hepatitis E virus.

  • Wei Cai‎ et al.
  • Scientific reports‎
  • 2016‎

Hepatitis E virus (HEV) is the aetiological agent of enterically transmitted hepatitis. The traditional methods for evaluating neutralizing antibody titres against HEV are real-time PCR and the immunofluorescence foci assay (IFA), which are poorly repeatable and operationally complicated, factors that limit their applicability to high-throughput assays. In this study, we developed a novel high-throughput neutralizing assay based on biotin-conjugated p239 (HEV recombinant capsid proteins, a.a. 368-606) and staining with allophycocyanin-conjugated streptavidin (streptavidin APC) to amplify the fluorescence signal. A linear regression analysis indicated that there was a high degree of correlation between IFA and the novel assay. Using this method, we quantitatively evaluated the neutralization of sera from HEV-infected and vaccinated macaques. The anti-HEV IgG level had good concordance with the neutralizing titres of macaque sera. However, the neutralization titres of the sera were also influenced by anti-HEV IgM responses. Further analysis also indicated that, although vaccination with HEV vaccine stimulated higher anti-HEV IgG and neutralization titres than infection with HEV in macaques, the proportions of neutralizing antibodies in the infected macaques' sera were higher than in the vaccinated macaques with the same anti-HEV IgG levels. Thus, the infection more efficiently stimulated neutralizing antibody responses.


MicroRNA-31 negatively regulates peripherally derived regulatory T-cell generation by repressing retinoic acid-inducible protein 3.

  • Lingyun Zhang‎ et al.
  • Nature communications‎
  • 2015‎

Peripherally derived regulatory T (pT(reg)) cell generation requires T-cell receptor (TCR) signalling and the cytokines TGF-β1 and IL-2. Here we show that TCR signalling induces the microRNA miR-31, which negatively regulates pT(reg)-cell generation. miR-31 conditional deletion results in enhanced induction of pT(reg) cells, and decreased severity of experimental autoimmune encephalomyelitis (EAE). Unexpectedly, we identify Gprc5a as a direct target of miR-31. Gprc5a is known as retinoic acid-inducible protein 3, and its deficiency leads to impaired pT(reg-)cell induction and increased EAE severity. By generating miR-31 and Gprc5a double knockout mice, we show that miR-31 promotes the development of EAE through inhibiting Gprc5a. Thus, our data identify miR-31 and its target Gprc5a as critical regulators for pT(reg)-cell generation, suggesting a previously unrecognized epigenetic mechanism for dysfunctional T(reg) cells in autoimmune diseases.


PRR11 regulates late-S to G2/M phase progression and induces premature chromatin condensation (PCC).

  • Chundong Zhang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2015‎

Recently, we have demonstrated that proline-rich protein 11 (PRR11) is a novel tumor-related gene product likely implicated in the regulation of cell cycle progression as well as lung cancer development. However, its precise role in cell cycle progression remains unclear. In the present study, we have further investigated the expression pattern and functional implication of PRR11 during cell cycle in detail in human lung carcinoma-derived H1299 cells. According to our immunofluorescence study, PRR11 was expressed largely in cytoplasm, the amount of PRR11 started to increase in the late S phase, and was retained until just before mitotic telophase. Consistent with those observations, siRNA-mediated knockdown of PRR11 caused a significant cell cycle arrest in the late S phase. Intriguingly, the treatment with dNTPs further augmented PRR11 silencing-mediated S phase arrest. Moreover, knockdown of PRR11 also resulted in a remarkable retardation of G2/M progression, and PRR11-knockdown cells subsequently underwent G2 phase cell cycle arrest accompanied by obvious mitotic defects such as multipolar spindles and multiple nuclei. In addition, forced expression of PRR11 promoted the premature Chromatin condensation (PCC), and then proliferation of PRR11-expressing cells was massively attenuated and induced apoptosis. Taken together, our current observations strongly suggest that PRR11, which is strictly regulated during cell cycle progression, plays a pivotal role in the regulation of accurate cell cycle progression through the late S phase to mitosis.


MicroR-542-3p can mediate ILK and further inhibit cell proliferation, migration and invasion in osteosarcoma cells.

  • Wei Cai‎ et al.
  • Aging‎
  • 2019‎

MiR-542-3p and its target gene integrin linked kinase (ILK) in human osteosarcoma together with the differentially expressed genes from osteosarcoma tissues was analyzed through bioinformatics analysis in this study. Real time quantitative polymerase chain reaction (qRT-PCR) and western blot showed that the miR-542-3p expression decreased while the ILK expression increased in the osteosarcoma tissues. The overexpressed miR-542-3p or silenced ILK restrained cell invasion, proliferation and migration and arrested cell cycle, facilitated cell apoptosis in U-2OS and 143B cells. The dual-luciferase assay confirmed the targeting relationship between miR-542-3p and ILK. MiR-542-3p overexpression inhibited osteosarcoma growth in vivo. In conclusion, miR-542-3p overexpression down-regulated its target gene ILK, promoted osteosarcoma cells apoptosis and inhibited their proliferation, migration and invasion.


Deoxycholic Acid-Mediated Sphingosine-1-Phosphate Receptor 2 Signaling Exacerbates DSS-Induced Colitis through Promoting Cathepsin B Release.

  • Shengnan Zhao‎ et al.
  • Journal of immunology research‎
  • 2018‎

We recently have proved that excessive fecal DCA caused by high-fat diet may serve as an endogenous danger-associated molecular pattern to activate NLRP3 inflammasome and thus contributes to the development of inflammatory bowel disease (IBD). Moreover, the effect of DCA on inflammasome activation is mainly mediated through bile acid receptor sphingosine-1-phosphate receptor 2 (S1PR2); however, the intermediate process remains unclear. Here, we sought to explore the detailed molecular mechanism involved and examine the effect of S1PR2 blockage in a colitis mouse model. In this study, we found that DCA could dose dependently upregulate S1PR2 expression. Meanwhile, DCA-induced NLRP3 inflammasome activation is at least partially achieved through stimulating extracellular regulated protein kinases (ERK) signaling pathway downstream of S1PR2 followed by promoting of lysosomal cathepsin B release. DCA enema significantly aggravated DSS-induced colitis in mice and S1PR2 inhibitor as well as inflammasome inhibition by cathepsin B antagonist substantially reducing the mature IL-1β production and alleviated colonic inflammation superimposed by DCA. Therefore, our findings suggest that S1PR2/ERK1/2/cathepsin B signaling plays a critical role in triggering inflammasome activation by DCA and S1PR2 may represent a new potential therapeutic target for the management of intestinal inflammation in individuals on a high-fat diet.


Enhanced autophagy contributes to protective effects of IL-22 against acetaminophen-induced liver injury.

  • Ruidong Mo‎ et al.
  • Theranostics‎
  • 2018‎

Acute or acute-on-chronic liver failure is a leading cause of death in liver diseases without effective treatment. Interleukin-22 (IL-22) is currently in clinical trials for the treatment of severe alcoholic hepatitis, but the underlying mechanisms remain to be explored. Autophagy plays a critical role in alleviating liver injury. The aim of the current study is to explore the role of autophagy in IL-22-mediated hepato-protective effect against acetaminophen (APAP)-induced liver injury. Methods: A model of acute liver injury induced by APAP was used in vivo. IL-22 was administrated to the APAP-treated mice. Hepatocytes were pre-incubated with IL-22, followed by exposure to APAP for in vitro analyses. Results: IL-22 administration significantly reduced serum ALT and AST, hepatic reactive oxygen species, and liver necrosis in APAP-challenged mice. APAP treatment increased hepatic autophagosomes, which was further intensified by IL-22 co-treatment. Hepatic LC3-II was moderately upregulated after APAP administration without obvious alteration of phosphorylation of AMP-activated kinase (p-AMPK). IL-22 pretreatment significantly upregulated hepatic LC3-II and p-AMPK in APAP-treated mice. IL-22 also alleviated APAP-induced cytotoxicity and upregulated LC3-II and p-AMPK expression in cultured hepatocytes treated with APAP in vitro. When p-AMPK was blocked with compound C (an AMPK inhibitor), IL-22-mediated LC3-II conversion and protection against APAP-induced cytotoxicity was weakened. Conclusions: Enhanced AMPK-dependent autophagy contributes to protective effects of IL-22 against APAP-induced liver injury.


The effects of choline on hepatic lipid metabolism, mitochondrial function and antioxidative status in human hepatic C3A cells exposed to excessive energy substrates.

  • Jie Zhu‎ et al.
  • Nutrients‎
  • 2014‎

Choline plays a lipotropic role in lipid metabolism as an essential nutrient. In this study, we investigated the effects of choline (5, 35 and 70 μM) on DNA methylation modifications, mRNA expression of the critical genes and their enzyme activities involved in hepatic lipid metabolism, mitochondrial membrane potential (Δψm) and glutathione peroxidase (GSH-Px) in C3A cells exposed to excessive energy substrates (lactate, 10 mM; octanoate, 2 mM and pyruvate, 1 mM; lactate, octanoate and pyruvate-supplemented medium (LOP)). Thirty five micromole or 70 μM choline alone, instead of a low dose (5 μM), reduced hepatocellular triglyceride (TG) accumulation, protected Δψm from decrement and increased GSH-Px activity in C3A cells. The increment of TG accumulation, reactive oxygen species (ROS) production and Δψm disruption were observed under LOP treatment in C3A cells after 72 h of culture, which were counteracted by concomitant treatment of choline (35 μM or 70 μM) partially via reversing the methylation status of the peroxisomal proliferator-activated receptor alpha (PPARα) gene promoter, upregulating PPARα, carnitine palmitoyl transferase-I (CPT-I) and downregulating fatty acid synthase (FAS) gene expression, as well as decreasing FAS activity and increasing CPT-I and GSH-Px activities. These findings provided a novel insight into the lipotropic role of choline as a vital methyl-donor in the intervention of chronic metabolic diseases.


Circulating magnesium levels and incidence of coronary heart diseases, hypertension, and type 2 diabetes mellitus: a meta-analysis of prospective cohort studies.

  • Jiang Wu‎ et al.
  • Nutrition journal‎
  • 2017‎

Data on the associations between circulating magnesium (Mg) levels and incidence of coronary heart diseases (CHD), hypertension, and type 2 diabetes mellitus (T2DM) are inconsistent and inconclusive. The aim of this study was to examine circulating Mg levels in relation to incidence of CHD, hypertension, and T2DM.


Mesenchymal stem cells alleviate bacteria-induced liver injury in mice by inducing regulatory dendritic cells.

  • Yi Zhang‎ et al.
  • Hepatology (Baltimore, Md.)‎
  • 2014‎

Fulminant hepatic failure (FHF) is a clinical syndrome characterized by sudden and severe impairment of liver function. Mesenchymal stem cells (MSCs) have been proposed as a promising therapeutic approach for FHF. In this study we used Propionibacterium acnes (P. acnes)-primed, lipopolysaccharide (LPS)-induced liver injury in mice as an animal model of human FHF. We demonstrated that administration of MSCs significantly ameliorated liver injury and improved the survival rates of mice subjected to P. acnes plus LPS-induced FHF. Allogeneic MSCs showed similar treatment efficacy as autologous MSCs did in FHF. Treatment efficacy of MSCs could be attributed to decreased infiltration and activation of CD4(+) T cells in the liver, inhibition of T helper 1 cells, and induction of regulatory T cells (Tregs). Moreover, decreased DNA copies of P. acnes were detected in the liver of MSC-treated mice. Intriguingly, a distinct liver population of CD11c(+) MHCII(hi) CD80(lo) CD86(lo) regulatory dendritic cells (DCs) was induced by MSCs. Moreover, these DCs induced Treg differentiation through transforming growth factor-β production. Further mechanistic studies demonstrated that MSC-derived prostaglandin E2 and one of its receptors, EP4, played essential roles in the differentiation of CD11c(+) B220(-) DC precursors into regulatory DCs in a phosphoinositide 3-kinase-dependent manner.


Bile salt dependent lipase promotes intestinal adaptation in rats with massive small bowel resection.

  • Yi Yang‎ et al.
  • Bioscience reports‎
  • 2018‎

Intestinal adaptation is important for the short bowel syndrome (SBS) patients. Growing evidence has suggested that bile salt dependent lipase (BSDL) not only has the lipolytic activity, but also the immune-modulating and pro-proliferative activities. The purpose of the present study was to investigate the effects of BSDL on intestinal adaptive growth and gut barrier function in a rat model of SBS. Twenty-four male Sprague-Dawley rats were randomly divided into three experimental groups: sham group (rats underwent bowel transection and re-anastomosis), SBS group (rats underwent 80% bowel resection), SBS-BSDL group (SBS rats orally administered BSDL). The animals were weighed daily. The intestinal morpho-histochemical changes and intestinal barrier function were determined 14 days after the operations. Meanwhile, the expressions of Wnt signaling molecules in enterocytes were also analyzed by immunohistochemistry and Western blot. The postoperative weight gain was faster in the SBS rats treated with BSDL than in the SBS/untreated group. The SBS rats treated with BSDL had significantly greater villus height, crypt depth, and enterocyte proliferation in their residual intestines, as compared with the SBS/untreated group. The recovery of intestinal barrier function was promoted and the expressions of tight-junction proteins were increased in the SBS rats treated with BSDL. Additionally, the data indicated that the proadaptive activities of BSDL might be mediated by Wnt signaling activation in the enterocytes. These observations suggested that enteral BSDL administration promoted intestinal adaptive growth and barrier repairing by activating Wnt signaling pathway in SBS rats.


RIG-I antiviral signaling drives interleukin-23 production and psoriasis-like skin disease.

  • Huiyuan Zhu‎ et al.
  • EMBO molecular medicine‎
  • 2017‎

Retinoic acid inducible-gene I (RIG-I) functions as one of the major sensors of RNA viruses. DDX58, which encodes the RIG-I protein, has been newly identified as a susceptibility gene in psoriasis. Here, we show that the activation of RIG-I by 5'ppp-dsRNA, its synthetic ligand, directly causes the production of IL-23 and triggers psoriasis-like skin disease in mice. Repeated injections of IL-23 to the ears failed to induce IL-23 production and a full psoriasis-like skin phenotype, in either germ-free or RIG-I-deficient mice. RIG-I is also critical for a full development of skin inflammation in imiquimod (IMQ)-induced psoriasis-like mouse model. Furthermore, RIG-I-mediated endogenous IL-23 production was mainly confined to the CD11c+ dendritic cells (DCs) via nuclear factor-kappa B (NF-κB) signaling, and stimulated RIG-I expression in an auto-regulatory feedback loop. Thus, our data suggest that the dysregulation in the antiviral immune responses of hosts through the innate pattern recognition receptors may trigger the skin inflammatory conditions in the pathophysiology of psoriasis.


The Role of PPARγ in Advanced Glycation End Products-Induced Inflammatory Response in Human Chondrocytes.

  • Chi Ma‎ et al.
  • PloS one‎
  • 2015‎

Advances made in the past ten years highlight the notion that peroxisome proliferator-activated receptors gamma (PPARγ) has protective properties in the pathophysiology of osteoarthritis (OA). The aim of this study was to define the roles of PPARγ in AGEs-induced inflammatory response in human chondrocytes.


A positive feedback between IDO1 metabolite and COL12A1 via MAPK pathway to promote gastric cancer metastasis.

  • Zhen Xiang‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2019‎

IDO1 (Indoleamine 2,3-dioxygenase 1) inhibits host anti-tumor immune response by exhausting tryptophan in tumor microenvironment, but the pathogenic mechanisms of IDO1 in gastric cancer (GC) cells need to be further explored.


A bibliometric analysis of long non-coding RNA and chemotherapeutic resistance research.

  • Xiaoman Chen‎ et al.
  • Oncotarget‎
  • 2019‎

The global outputs of annual publication in long non-coding RNAs (lncRNAs) and chemotherapeutic resistance research exponentially increased from 2 in 2008 to 176 in 2017. Using Java application CiteSpace V and VOSviewer, this study assessed the publication model of lncRNAs and chemoresistance by bibliometric analysis. Totally, 2883 authors contributed 528 publications of lncRNAs and chemoresistance in 215 academic journals in the recent decade (2008-2018). Oncotarget in the 215 academic journals published the highest number of publications (60). China had the highest number of publication outputs (358). The leading institute was Nanjing Medical University. Wang Y was the most influential author (13 counts). Gupta RA had the most cited documents (87 counts). "Gene expression" and "poor prognosis" were identified as the hotspots. "Cancer stem cell", "HOTAIR" and "UCA1" were the frontiers of the fields in recent years. The increase of publications on lncRNAs and chemotherapeutic resistance will continue in the next years. HOTAIR and UCA1 with multiple roles in drug resistance may offer big opportunities for targeted chemoresistance in cancer therapy. These results may help us discover and explain the possible underlying laws of the subject.


HMGB1-induced ILC2s activate dendritic cells by producing IL-9 in asthmatic mouse model.

  • Jie Wan‎ et al.
  • Cellular immunology‎
  • 2020‎

Asthma is a disease of the respiratory system that is commonly considered a T-helper 2 (Th2) cell-associated inflammatory disease. Group 2 innate lymphoid cells (ILC2s) promote the inflammatory responses in asthma by secreting type 2 cytokines. Interleukin (IL)-9 also serves as a promoting factor in asthma and it is well known that ILC2s have an autocrine effect of IL-9 to sustain their survival and proliferation. However, the specific role of ILC2-derived IL-9 in asthma remains unclear. HMGB1 (High-Mobility Group Box-1) is a nuclear protein, and Previous studies have shown that HMGB1 can regulate the differentiation of T-helper cells and participate in the development of asthma. But whether HMGB1 can regulate the innate lymphocytes in the pathological process of asthma is unknown. In this study we have shown increased presence of HMGB1 protein in the lung of mice with asthma, which was associated with increased secretion of IL-9 by ILC2s. This led to the activation of dendritic cells (DCs) that can accelerate the differentiation of Th2 cells and worsen the severity of asthma. Taken together, our study provides a complementary understanding of the asthma development and highlights a novel inflammatory pathway in the pathogenesis of asthma.


Hydrogen peroxide-response nanoprobe for CD44-targeted circulating tumor cell detection and H2O2 analysis.

  • Chunting Li‎ et al.
  • Biomaterials‎
  • 2020‎

Circulating tumor cells (CTCs) represent the most common way of tumor metastasis and has been considered as a significant index for tumor diagnosis, staging and prognosis. However, CTC detection and analysis are always limited by the scarcity of CTC in the peripheral blood and the interference of blood cells. Therefore, here we presented with a hydrogen peroxide (H2O2)-response nanoprobes with CD44-targeted ability to reduce the interference of blood cells and improve the detection efficiency and accuracy and the pancreatic cancer cell was used to evaluate the feasibility of our probe. Shortly, hydrophobic H2O2-response naphthalimide-borate fluorophore was introduced onto the hydrophilic hyaluronic acid to form an amphiphilic complex, which could self-assemble into fluorescent nanoprobes in water. Our studies demonstrated that the nanoprobes were not only able to specifically recognize the pancreatic cancer cells with overexpressed CD44 proteins and reduce the influence of white blood cells in the peripheral blood, but also capable of semi-quantifying H2O2 content in CTCs, Which could be further used as a significant index for tumor clinical evaluation and therapy.


Vesicle-Mediated Dendritic Cell Activation in Acinetobacter baumannii Clinical Isolate, which Contributes to Th2 Response.

  • Wei Cai‎ et al.
  • Journal of immunology research‎
  • 2019‎

Acinetobacter baumannii, as a nonfermentation Gram-negative bacterium, mainly cause nosocomial infections in critically ill patients. With the widespread of multidrug-resistant Acinetobacter baumannii, the urgency of developing effective therapy options has been emphasized nowadays. Outer membrane vesicles derived from bacteria show potential vaccine effects against bacterial infection in recent study. Our present research is aimed at investigating the mechanisms involved in immune protection of mice after outer membrane vesicle immunization. As our data showed, the outer membrane vesicle from an Acinetobacter baumannii clinical strain could activate bone marrow-derived dendritic cells (BMDCs) to promote Th2 activity together with humoral immune responses to Acinetobacter baumannii-induced sepsis, which might enlighten people to have a better understanding of OMVs' role as a vaccine to prevent bacterial infections.


The interleukin-4/PPARγ signaling axis promotes oligodendrocyte differentiation and remyelination after brain injury.

  • Qingxiu Zhang‎ et al.
  • PLoS biology‎
  • 2019‎

The repair of white matter damage is of paramount importance for functional recovery after brain injuries. Here, we report that interleukin-4 (IL-4) promotes oligodendrocyte regeneration and remyelination. IL-4 receptor expression was detected in a variety of glial cells after ischemic brain injury, including oligodendrocyte lineage cells. IL-4 deficiency in knockout mice resulted in greater deterioration of white matter over 14 d after stroke. Consistent with these findings, intranasal delivery of IL-4 nanoparticles after stroke improved white matter integrity and attenuated long-term sensorimotor and cognitive deficits in wild-type mice, as revealed by histological immunostaining, electron microscopy, diffusion tensor imaging, and electrophysiology. The selective effect of IL-4 on remyelination was verified in an ex vivo organotypic model of demyelination. By leveraging primary oligodendrocyte progenitor cells (OPCs), microglia-depleted mice, and conditional OPC-specific peroxisome proliferator-activated receptor gamma (PPARγ) knockout mice, we discovered a direct salutary effect of IL-4 on oligodendrocyte differentiation that was mediated by the PPARγ axis. Our findings reveal a new regenerative role of IL-4 in the central nervous system (CNS), which lies beyond its known immunoregulatory functions on microglia/macrophages or peripheral lymphocytes. Therefore, intranasal IL-4 delivery may represent a novel therapeutic strategy to improve white matter integrity in stroke and other brain injuries.


Diagnostic Fragment-Ion-Based for Rapid Identification of Chlorogenic Acids Derivatives in Inula cappa Using UHPLC-Q-Exactive Orbitrap Mass Spectrometry.

  • Jie Peng‎ et al.
  • Journal of analytical methods in chemistry‎
  • 2021‎

Inula cappa (Buch.-Ham. ex D. Don) DC has been used in traditional Chinese medicine to treat malaria, dysentery, and hepatitis. Previous studies have shown that chlorogenic acid is the effective ingredient of plants in this family. And the research of the chlorogenic acid in Inula cappa will help to further improve the effective resource utilization rate of this plant. Therefore, it is necessary to establish an accurate method to characterize the chlorogenic acid components in Inula cappa. In this study, a simple, fast, and sensitive UHPLC-Q-Exactive Orbitrap mass spectrometry method was established, which can simultaneously analyze known and unknown ingredients in a short time (within 30 minutes) in Inula cappa. According to the diagnosis fragmentation ions, retention time, and bibliography, 68 chlorogenic acid derivatives were identified in Inula cappa. The results of this experiment lay the foundation for the active substances and quality control of Inula cappa and provide a theoretical basis for whether Inula cappa can be an alternative to the endangered wild medicinal materials of the same family.


DENR controls JAK2 translation to induce PD-L1 expression for tumor immune evasion.

  • Baiwen Chen‎ et al.
  • Nature communications‎
  • 2022‎

RNA-binding proteins (RBPs) can recognize thousands of RNAs that help to maintain cell homeostasis, and RBP dysfunction is frequently observed in various cancers. However, whether specific RBPs are involved in tumor immune evasion by regulating programmed death ligand-1 (PD-L1) is unclear. Here, we perform targeted RBP CRISPR/Cas9 screening and identify density regulated re-initiation and release factor (DENR) as a PD-L1 regulator. DENR-depleted cancer cells exhibit reduced PD-L1 expression in vitro and in vivo. DENR depletion significantly suppresses tumor growth and enhances the tumor-killing activity of CD8+ T cells. Mechanistically, DENR antagonizes the translational repression of three consecutive upstream open reading frames (uORFs) upstream of Janus kinase 2 (Jak2); thus, DENR deficiency impairs JAK2 translation and the IFNγ-JAK-STAT signaling pathway, resulting in reduced PD-L1 expression in tumors. Overall, we discover an RBP DENR that could regulate PD-L1 expression for tumor immune evasion, and highlight the potential of DENR as a therapeutic target for immunotherapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: