2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 30 papers

Potent and Selective Covalent Quinazoline Inhibitors of KRAS G12C.

  • Mei Zeng‎ et al.
  • Cell chemical biology‎
  • 2017‎

Targeted covalent small molecules have shown promise for cancers driven by KRAS G12C. Allosteric compounds that access an inducible pocket formed by movement of a dynamic structural element in KRAS, switch II, have been reported, but these compounds require further optimization to enable their advancement into clinical development. We demonstrate that covalent quinazoline-based switch II pocket (SIIP) compounds effectively suppress GTP loading of KRAS G12C, MAPK phosphorylation, and the growth of cancer cells harboring G12C. Notably we find that adding an amide substituent to the quinazoline scaffold allows additional interactions with KRAS G12C, and remarkably increases the labeling efficiency, potency, and selectivity of KRAS G12C inhibitors. Structural studies using X-ray crystallography reveal a new conformation of SIIP and key interactions made by substituents located at the quinazoline 2-, 4-, and 7-positions. Optimized lead compounds in the quinazoline series selectively inhibit KRAS G12C-dependent signaling and cancer cell growth at sub-micromolar concentrations.


Chemical Biology Toolkit for DCLK1 Reveals Connection to RNA Processing.

  • Yan Liu‎ et al.
  • Cell chemical biology‎
  • 2020‎

Doublecortin-like kinase 1 (DCLK1) is critical for neurogenesis, but overexpression is also observed in multiple cancers and is associated with poor prognosis. Nevertheless, the function of DCLK1 in cancer, especially the context-dependent functions, are poorly understood. We present a "toolkit" that includes the DCLK1 inhibitor DCLK1-IN-1, a complementary DCLK1-IN-1-resistant mutation G532A, and kinase dead mutants D511N and D533N, which can be used to investigate signaling pathways regulated by DCLK1. Using a cancer cell line engineered to be DCLK1 dependent for growth and cell migration, we show that this toolkit can be used to discover associations between DCLK1 kinase activity and biological processes. In particular, we show an association between DCLK1 and RNA processing, including the identification of CDK11 as a potential substrate of DCLK1 using phosphoproteomics.


Inhibiting the redox function of APE1 suppresses cervical cancer metastasis via disengagement of ZEB1 from E-cadherin in EMT.

  • Qing Li‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2021‎

Metastasis is a major challenge in cervical cancer treatment. Previous studies have shown that the dual functional protein apurinic/apyrimidinic endonuclease 1 (APE1) promotes tumor metastasis and is overexpressed in cervical cancer. However, the biological role and mechanism of APE1 in cervical cancer metastasis have rarely been studied.


Leveraging Compound Promiscuity to Identify Targetable Cysteines within the Kinome.

  • Suman Rao‎ et al.
  • Cell chemical biology‎
  • 2019‎

Covalent kinase inhibitors, which typically target cysteine residues, represent an important class of clinically relevant compounds. Approximately 215 kinases are known to have potentially targetable cysteines distributed across 18 spatially distinct locations proximal to the ATP-binding pocket. However, only 40 kinases have been covalently targeted, with certain cysteine sites being the primary focus. To address this disparity, we have developed a strategy that combines the use of a multi-targeted acrylamide-modified inhibitor, SM1-71, with a suite of complementary chemoproteomic and cellular approaches to identify additional targetable cysteines. Using this single multi-targeted compound, we successfully identified 23 kinases that are amenable to covalent inhibition including MKNK2, MAP2K1/2/3/4/6/7, GAK, AAK1, BMP2K, MAP3K7, MAPKAPK5, GSK3A/B, MAPK1/3, SRC, YES1, FGFR1, ZAK (MLTK), MAP3K1, LIMK1, and RSK2. The identification of nine of these kinases previously not targeted by a covalent inhibitor increases the number of targetable kinases and highlights opportunities for covalent kinase inhibitor development.


Discovery of type II inhibitors of TGFβ-activated kinase 1 (TAK1) and mitogen-activated protein kinase kinase kinase kinase 2 (MAP4K2).

  • Li Tan‎ et al.
  • Journal of medicinal chemistry‎
  • 2015‎

We developed a pharmacophore model for type II inhibitors that was used to guide the construction of a library of kinase inhibitors. Kinome-wide selectivity profiling of the library resulted in the identification of a series of 4-substituted 1H-pyrrolo[2,3-b]pyridines that exhibited potent inhibitory activity against two mitogen-activated protein kinases (MAPKs), TAK1 (MAP3K7) and MAP4K2, as well as pharmacologically well interrogated kinases such as p38α (MAPK14) and ABL. Further investigation of the structure-activity relationship (SAR) resulted in the identification of potent dual TAK1 and MAP4K2 inhibitors such as 1 (NG25) and 2 as well as MAP4K2 selective inhibitors such as 16 and 17. Some of these inhibitors possess good pharmacokinetic properties that will enable their use in pharmacological studies in vivo. A 2.4 Å cocrystal structure of TAK1 in complex with 1 confirms that the activation loop of TAK1 assumes the DFG-out conformation characteristic of type II inhibitors.


Pharmacological targeting of the pseudokinase Her3.

  • Ting Xie‎ et al.
  • Nature chemical biology‎
  • 2014‎

Her3 (also known as ErbB3) belongs to the epidermal growth factor receptor tyrosine kinases and is well credentialed as an anti-cancer target but is thought to be 'undruggable' using ATP-competitive small molecules because it lacks appreciable kinase activity. Here we report what is to our knowledge the first selective Her3 ligand, TX1-85-1, that forms a covalent bond with Cys721 located in the ATP-binding site of Her3. We demonstrate that covalent modification of Her3 inhibits Her3 signaling but not proliferation in some Her3-dependent cancer cell lines. Subsequent derivatization with a hydrophobic adamantane moiety demonstrates that the resultant bivalent ligand (TX2-121-1) enhances inhibition of Her3-dependent signaling. Treatment of cells with TX2-121-1 results in partial degradation of Her3 and serendipitously interferes with productive heterodimerization between Her3 with either Her2 or c-Met. These results suggest that small molecules will be capable of perturbing the biological function of Her3 and ∼60 other pseudokinases found in human cells.


Studies of TAK1-centered polypharmacology with novel covalent TAK1 inhibitors.

  • Li Tan‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2017‎

Targeted polypharmacology provides an efficient method of treating diseases such as cancer with complex, multigenic causes provided that compounds with advantageous activity profiles can be discovered. Novel covalent TAK1 inhibitors were validated in cellular contexts for their ability to inhibit the TAK1 kinase and for their polypharmacology. Several inhibitors phenocopied reported TAK1 inhibitor 5Z-7-oxozaenol with comparable efficacy and complementary kinase selectivity profiles. Compound 5 exhibited the greatest potency in RAS-mutated and wild-type RAS cell lines from various cancer types. A biotinylated derivative of 5, 27, was used to verify TAK1 binding in cells. The newly described inhibitors constitute useful tools for further development of multi-targeting TAK1-centered inhibitors for cancer and other diseases.


Structure-guided development of covalent TAK1 inhibitors.

  • Li Tan‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2017‎

TAK1 (transforming growth factor-β-activated kinase 1) is an essential intracellular mediator of cytokine and growth factor signaling and a potential therapeutic target for the treatment of immune diseases and cancer. Herein we report development of a series of 2,4-disubstituted pyrimidine covalent TAK1 inhibitors that target Cys174, a residue immediately adjacent to the 'DFG-motif' of the kinase activation loop. Co-crystal structures of TAK1 with candidate compounds enabled iterative rounds of structure-based design and biological testing to arrive at optimized compounds. Lead compounds such as 2 and 10 showed greater than 10-fold biochemical selectivity for TAK1 over the closely related kinases MEK1 and ERK1 which possess an equivalently positioned cysteine residue. These compounds are smaller, more easily synthesized, and exhibit a different spectrum of kinase selectivity relative to previously reported macrocyclic natural product TAK1 inhibitors such as 5Z-7-oxozeanol.


ADAP1 promotes latent HIV-1 reactivation by selectively tuning KRAS-ERK-AP-1 T cell signaling-transcriptional axis.

  • Nora-Guadalupe P Ramirez‎ et al.
  • Nature communications‎
  • 2022‎

Immune stimulation fuels cell signaling-transcriptional programs inducing biological responses to eliminate virus-infected cells. Yet, retroviruses that integrate into host cell chromatin, such as HIV-1, co-opt these programs to switch between latent and reactivated states; however, the regulatory mechanisms are still unfolding. Here, we implemented a functional screen leveraging HIV-1's dependence on CD4+ T cell signaling-transcriptional programs and discovered ADAP1 is an undescribed modulator of HIV-1 proviral fate. Specifically, we report ADAP1 (ArfGAP with dual PH domain-containing protein 1), a previously thought neuronal-restricted factor, is an amplifier of select T cell signaling programs. Using complementary biochemical and cellular assays, we demonstrate ADAP1 inducibly interacts with the immune signalosome to directly stimulate KRAS GTPase activity thereby augmenting T cell signaling through targeted activation of the ERK-AP-1 axis. Single cell transcriptomics analysis revealed loss of ADAP1 function blunts gene programs upon T cell stimulation consequently dampening latent HIV-1 reactivation. Our combined experimental approach defines ADAP1 as an unexpected tuner of T cell programs facilitating HIV-1 latency escape.


Dynamic surveillance of tamoxifen-resistance in ER-positive breast cancer by CAIX-targeted ultrasound imaging.

  • Ying Li‎ et al.
  • Cancer medicine‎
  • 2020‎

Tamoxifen-based hormone therapy is central for the treatment of estrogen receptor positive (ER+ ) breast cancer. However, the acquired tamoxifen resistance, typically co-exists with hypoxia, remains a major challenge. We aimed to develop a non-invasive, targeted ultrasound imaging approach to dynamically monitory of tamoxifen resistance. After we assessed acquired tamoxifen resistance in 235 breast cancer patients and a list of breast cancer cell lines, we developed poly(lactic-co-glycolic acid)-poly(ethylene glycol)-carbonic anhydrase IX mono antibody nanobubbles (PLGA-PEG-mAbCAIX NBs) to detect hypoxic breast cancer cells upon exposure of tamoxifen in nude mice. We demonstrate that carbonic anhydrase IX (CAIX) expression is associated with breast cancer local recurrence and tamoxifen resistance both in clinical and cellular models. We find that CAIX overexpression increases tamoxifen tolerance in MCF-7 cells and predicts early tamoxifen resistance along with an oscillating pattern in intracellular ATP level in vitro. PLGA-PEG-mAbCAIX NBs are able to dynamically detect tamoxifen-induced hypoxia and tamoxifen resistance in vivo. CAIX-conjugated NBs with noninvasive ultrasound imaging is powerful for dynamically monitoring hypoxic microenvironment in ER+ breast cancer with tamoxifen resistance.


Exploring Targeted Degradation Strategy for Oncogenic KRASG12C.

  • Mei Zeng‎ et al.
  • Cell chemical biology‎
  • 2020‎

KRAS is the most frequently mutated oncogene found in pancreatic, colorectal, and lung cancers. Although it has been challenging to identify targeted therapies for cancers harboring KRAS mutations, KRASG12C can be targeted by small-molecule inhibitors that form covalent bonds with cysteine 12 (C12). Here, we designed a library of C12-directed covalent degrader molecules (PROTACs) and subjected them to a rigorous evaluation process to rapidly identify a lead compound. Our lead degrader successfully engaged CRBN in cells, bound KRASG12Cin vitro, induced CRBN/KRASG12C dimerization, and degraded GFP-KRASG12C in reporter cells in a CRBN-dependent manner. However, it failed to degrade endogenous KRASG12C in pancreatic and lung cancer cells. Our data suggest that inability of the lead degrader to effectively poly-ubiquitinate endogenous KRASG12C underlies the lack of activity. We discuss challenges for achieving targeted KRASG12C degradation and proposed several possible solutions which may lead to efficient degradation of endogenous KRASG12C.


Lentiviral-Driven Discovery of Cancer Drug Resistance Mutations.

  • Paul Yenerall‎ et al.
  • Cancer research‎
  • 2021‎

Identifying resistance mutations in a drug target provides crucial information. Lentiviral transduction creates multiple types of mutations due to the error-prone nature of the HIV-1 reverse transcriptase (RT). Here we optimized and leveraged this property to identify drug resistance mutations, developing a technique we term LentiMutate. This technique was validated by identifying clinically relevant EGFR resistance mutations, then applied to two additional clinical anticancer drugs: imatinib, a BCR-ABL inhibitor, and AMG 510, a KRAS G12C inhibitor. Novel deletions in BCR-ABL1 conferred resistance to imatinib. In KRAS-G12C or wild-type KRAS, point mutations in the AMG 510 binding pocket or oncogenic non-G12C mutations conferred resistance to AMG 510. LentiMutate should prove highly valuable for clinical and preclinical cancer-drug development. SIGNIFICANCE: LentiMutate can evaluate a drug's on-target activity and can nominate resistance mutations before they occur in patients, which could accelerate and refine drug development to increase the survival of patients with cancer.


Dynamic ultrasound molecular-targeted imaging of senescence in evaluation of lapatinib resistance in HER2-positive breast cancer.

  • Xiaoyu Chen‎ et al.
  • Cancer medicine‎
  • 2023‎

Prolonged treatment of HER2+ breast cancer with lapatinib (LAP) causes cellular senescence and acquired drug resistance, which often associating with poor prognosis for patients. We aim to explore the correlation between cellular senescence and LAP resistance in HER2+ breast cancer, screen for molecular marker of reversible senescence, and construct targeted nanobubbles for ultrasound molecular imaging to dynamically evaluate LAP resistance.


Inhibition of Cell Proliferation in an NRAS Mutant Melanoma Cell Line by Combining Sorafenib and α-Mangostin.

  • Yun Xia‎ et al.
  • PloS one‎
  • 2016‎

α-Mangostin is a natural product commonly used in Asia for cosmetic and medicinal applications including topical treatment of acne and skin cancer. Towards finding new pharmacological strategies that overcome NRAS mutant melanoma, we performed a cell proliferation-based combination screen using a collection of well-characterized small molecule kinase inhibitors and α-Mangostin. We found that α-Mangostin significantly enhances Sorafenib pharmacological efficacy against an NRAS mutant melanoma cell line. The synergistic effects of α-Mangostin and Sorafenib were associated with enhanced inhibition of activated AKT and ERK, induced ER stress, and reduced autophagy, eventually leading to apoptosis. The structure of α-Mangostin resembles several inhibitors of the Retinoid X receptor (RXR). MITF expression, which is regulated by RXR, was modulated by α-Mangostin. Molecular docking revealed that α-Mangostin can be accommodated by the ligand binding pocket of RXR and may thereby compete with RXR-mediated control of MITF expression. In summary, these data demonstrate an unanticipated synergy between α-Mangostin and sorafenib, with mechanistic actions that convert a known safe natural product to a candidate combinatorial therapeutic agent.


Data publication with the structural biology data grid supports live analysis.

  • Peter A Meyer‎ et al.
  • Nature communications‎
  • 2016‎

Access to experimental X-ray diffraction image data is fundamental for validation and reproduction of macromolecular models and indispensable for development of structural biology processing methods. Here, we established a diffraction data publication and dissemination system, Structural Biology Data Grid (SBDG; data.sbgrid.org), to preserve primary experimental data sets that support scientific publications. Data sets are accessible to researchers through a community driven data grid, which facilitates global data access. Our analysis of a pilot collection of crystallographic data sets demonstrates that the information archived by SBDG is sufficient to reprocess data to statistics that meet or exceed the quality of the original published structures. SBDG has extended its services to the entire community and is used to develop support for other types of biomedical data sets. It is anticipated that access to the experimental data sets will enhance the paradigm shift in the community towards a much more dynamic body of continuously improving data analysis.


Rapid assessment of DCLK1 inhibitors using a peptide substrate mobility shift assay.

  • Yan Liu‎ et al.
  • STAR protocols‎
  • 2021‎

Peptide mobility shift assays provide a sensitive measure of kinase enzymatic activity and can be used to evaluate kinase inhibitors. Herein, we describe a protocol adapted for rapid assessment of doublecortin-like kinase inhibitors. Advantages include rapid iterations of therapeutic compound assessment and the ability to characterize kinase mutations, such as drug-resistant mutants for biological rescue experiments, on kinase activity. For complete details on the use and execution of this protocol, please refer to Liu et al. (2020).


The nonreceptor tyrosine kinase SRMS inhibits autophagy and promotes tumor growth by phosphorylating the scaffolding protein FKBP51.

  • Jung Mi Park‎ et al.
  • PLoS biology‎
  • 2021‎

Nutrient-responsive protein kinases control the balance between anabolic growth and catabolic processes such as autophagy. Aberrant regulation of these kinases is a major cause of human disease. We report here that the vertebrate nonreceptor tyrosine kinase Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristylation sites (SRMS) inhibits autophagy and promotes growth in a nutrient-responsive manner. Under nutrient-replete conditions, SRMS phosphorylates the PHLPP scaffold FK506-binding protein 51 (FKBP51), disrupts the FKBP51-PHLPP complex, and promotes FKBP51 degradation through the ubiquitin-proteasome pathway. This prevents PHLPP-mediated dephosphorylation of AKT, causing sustained AKT activation that promotes growth and inhibits autophagy. SRMS is amplified and overexpressed in human cancers where it drives unrestrained AKT signaling in a kinase-dependent manner. SRMS kinase inhibition activates autophagy, inhibits cancer growth, and can be accomplished using the FDA-approved tyrosine kinase inhibitor ibrutinib. This illuminates SRMS as a targetable vulnerability in human cancers and as a new target for pharmacological induction of autophagy in vertebrates.


GADD45α sensitizes cervical cancer cells to radiotherapy via increasing cytoplasmic APE1 level.

  • Qing Li‎ et al.
  • Cell death & disease‎
  • 2018‎

Radioresistance remains a major clinical challenge in cervical cancer therapy. However, the mechanism for the development of radioresistance in cervical cancer is unclear. Herein, we determined that growth arrest and DNA-damage-inducible protein 45α (GADD45α) is decreased in radioresistant cervical cancer compared to radiosensitive cancer both in vitro and in vivo. In addition, silencing GADD45α prevents cervical cancer cells from undergoing radiation-induced DNA damage, cell cycle arrest, and apoptosis. More importantly, our data show that the overexpression of GADD45α significantly enhances the radiosensitivity of radioresistant cervical cancer cells. These data show that GADD45α decreases the cytoplasmic distribution of APE1, thereby enhancing the radiosensitivity of cervical cancer cells. Furthermore, we show that GADD45α inhibits the production of nitric oxide (NO), a nuclear APE1 export stimulator, by suppressing both endothelial NO synthase (eNOS) and inducible NO synthase (iNOS) in cervical cancer cells. In conclusion, our findings suggest that decreased GADD45α expression significantly contributes to the development of radioresistance and that ectopic expression of GADD45α sensitizes cervical cancer cells to radiotherapy. GADD45α inhibits the NO-regulated cytoplasmic localization of APE1 through inhibiting eNOS and iNOS, thereby enhancing the radiosensitivity of cervical cancer cells.


Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition.

  • Mikko Taipale‎ et al.
  • Cell‎
  • 2012‎

HSP90 is a molecular chaperone that associates with numerous substrate proteins called clients. It plays many important roles in human biology and medicine, but determinants of client recognition by HSP90 have remained frustratingly elusive. We systematically and quantitatively surveyed most human kinases, transcription factors, and E3 ligases for interaction with HSP90 and its cochaperone CDC37. Unexpectedly, many more kinases than transcription factors bound HSP90. CDC37 interacted with kinases, but not with transcription factors or E3 ligases. HSP90::kinase interactions varied continuously over a 100-fold range and provided a platform to study client protein recognition. In wild-type clients, HSP90 did not bind particular sequence motifs, but rather associated with intrinsically unstable kinases. Stabilization of the kinase in either its active or inactive conformation with diverse small molecules decreased HSP90 association. Our results establish HSP90 client recognition as a combinatorial process: CDC37 provides recognition of the kinase family, whereas thermodynamic parameters determine client binding within the family.


Structural dataset for the fast-exchanging KRAS G13D.

  • Jia Lu‎ et al.
  • Data in brief‎
  • 2015‎

Cancers bearing the KRAS G13D mutation are notable for their distinct clinical behavior relative to other oncogenic KRAS mutations. We hypothesized that primary biochemical or biophysical properties of KRAS G13D might contribute to these clinical observations and as part of our study undertook structural studies using x-ray crystallography. In this data article we discuss several x-ray diffraction datasets that yielded structures of oncogenic KRAS mutants including a high resolution (1.13 Å) structure of KRAS G13D. The datasets are typical for high resolution x-ray diffraction data and allow the construction of atomic resolution, three dimensional structural models with high confidence. This data can be correlated with biochemical information such as defects in substrate binding kinetics, GTPase activities and interactions with the RAS effector RAF kinase.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: