Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 46 papers

A microRNA cluster in the Fragile-X region expressed during spermatogenesis targets FMR1.

  • Madhuvanthi Ramaiah‎ et al.
  • EMBO reports‎
  • 2019‎

Testis-expressed X-linked genes typically evolve rapidly. Here, we report on a testis-expressed X-linked microRNA (miRNA) cluster that despite rapid alterations in sequence has retained its position in the Fragile-X region of the X chromosome in placental mammals. Surprisingly, the miRNAs encoded by this cluster (Fx-mir) have a predilection for targeting the immediately adjacent gene, Fmr1, an unexpected finding given that miRNAs usually act in trans, not in cis Robust repression of Fmr1 is conferred by combinations of Fx-mir miRNAs induced in Sertoli cells (SCs) during postnatal development when they terminate proliferation. Physiological significance is suggested by the finding that FMRP, the protein product of Fmr1, is downregulated when Fx-mir miRNAs are induced, and that FMRP loss causes SC hyperproliferation and spermatogenic defects. Fx-mir miRNAs not only regulate the expression of FMRP, but also regulate the expression of eIF4E and CYFIP1, which together with FMRP form a translational regulatory complex. Our results support a model in which Fx-mir family members act cooperatively to regulate the translation of batteries of mRNAs in a developmentally regulated manner in SCs.


Class I HDAC inhibition blocks cocaine-induced plasticity by targeted changes in histone methylation.

  • Pamela J Kennedy‎ et al.
  • Nature neuroscience‎
  • 2013‎

Induction of histone acetylation in the nucleus accumbens (NAc), a key brain reward region, promotes cocaine-induced alterations in gene expression. Histone deacetylases (HDACs) tightly regulate the acetylation of histone tails, but little is known about the functional specificity of different HDAC isoforms in the development and maintenance of cocaine-induced plasticity, and previous studies of HDAC inhibitors report conflicting effects on cocaine-elicited behavioral adaptations. Here we demonstrate that specific and prolonged blockade of HDAC1 in NAc of mice increased global levels of histone acetylation, but also induced repressive histone methylation and antagonized cocaine-induced changes in behavior, an effect mediated in part through a chromatin-mediated suppression of GABAA receptor subunit expression and inhibitory tone on NAc neurons. Our findings suggest a new mechanism by which prolonged and selective HDAC inhibition can alter behavioral and molecular adaptations to cocaine and inform the development of therapeutics for cocaine addiction.


A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles.

  • Aravind Subramanian‎ et al.
  • Cell‎
  • 2017‎

We previously piloted the concept of a Connectivity Map (CMap), whereby genes, drugs, and disease states are connected by virtue of common gene-expression signatures. Here, we report more than a 1,000-fold scale-up of the CMap as part of the NIH LINCS Consortium, made possible by a new, low-cost, high-throughput reduced representation expression profiling method that we term L1000. We show that L1000 is highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts. We further show that the expanded CMap can be used to discover mechanism of action of small molecules, functionally annotate genetic variants of disease genes, and inform clinical trials. The 1.3 million L1000 profiles described here, as well as tools for their analysis, are available at https://clue.io.


Prolonged tau clearance and stress vulnerability rescue by pharmacological activation of autophagy in tauopathy neurons.

  • M Catarina Silva‎ et al.
  • Nature communications‎
  • 2020‎

Tauopathies are neurodegenerative diseases associated with accumulation of abnormal tau protein in the brain. Patient iPSC-derived neuronal cell models replicate disease-relevant phenotypes ex vivo that can be pharmacologically targeted for drug discovery. Here, we explored autophagy as a mechanism to reduce tau burden in human neurons and, from a small-molecule screen, identify the mTOR inhibitors OSI-027, AZD2014 and AZD8055. These compounds are more potent than rapamycin, and robustly downregulate phosphorylated and insoluble tau, consequently reducing tau-mediated neuronal stress vulnerability. MTORC1 inhibition and autophagy activity are directly linked to tau clearance. Notably, single-dose treatment followed by washout leads to a prolonged reduction of tau levels and toxicity for 12 days, which is mirrored by a sustained effect on mTORC1 inhibition and autophagy. This new insight into the pharmacodynamics of mTOR inhibitors in regulation of neuronal autophagy may contribute to development of therapies for tauopathies.


ELAVL4, splicing, and glutamatergic dysfunction precede neuron loss in MAPT mutation cerebral organoids.

  • Kathryn R Bowles‎ et al.
  • Cell‎
  • 2021‎

Frontotemporal dementia (FTD) because of MAPT mutation causes pathological accumulation of tau and glutamatergic cortical neuronal death by unknown mechanisms. We used human induced pluripotent stem cell (iPSC)-derived cerebral organoids expressing tau-V337M and isogenic corrected controls to discover early alterations because of the mutation that precede neurodegeneration. At 2 months, mutant organoids show upregulated expression of MAPT, glutamatergic signaling pathways, and regulators, including the RNA-binding protein ELAVL4, and increased stress granules. Over the following 4 months, mutant organoids accumulate splicing changes, disruption of autophagy function, and build-up of tau and P-tau-S396. By 6 months, tau-V337M organoids show specific loss of glutamatergic neurons as seen in individuals with FTD. Mutant neurons are susceptible to glutamate toxicity, which can be rescued pharmacologically by the PIKFYVE kinase inhibitor apilimod. Our results demonstrate a sequence of events that precede neurodegeneration, revealing molecular pathways associated with glutamate signaling as potential targets for therapeutic intervention in FTD.


Light-controlled modulation of gene expression by chemical optoepigenetic probes.

  • Surya A Reis‎ et al.
  • Nature chemical biology‎
  • 2016‎

Epigenetic gene regulation is a dynamic process orchestrated by chromatin-modifying enzymes. Many of these master regulators exert their function through covalent modification of DNA and histone proteins. Aberrant epigenetic processes have been implicated in the pathophysiology of multiple human diseases. Small-molecule inhibitors have been essential to advancing our understanding of the underlying molecular mechanisms of epigenetic processes. However, the resolution offered by small molecules is often insufficient to manipulate epigenetic processes with high spatiotemporal control. Here we present a generalizable approach, referred to as 'chemo-optical modulation of epigenetically regulated transcription' (COMET), enabling high-resolution, optical control of epigenetic mechanisms based on photochromic inhibitors of human histone deacetylases using visible light. COMET probes may be translated into new therapeutic strategies for diseases where conditional and selective epigenome modulation is required.


A selective HDAC 1/2 inhibitor modulates chromatin and gene expression in brain and alters mouse behavior in two mood-related tests.

  • Frederick A Schroeder‎ et al.
  • PloS one‎
  • 2013‎

Psychiatric diseases, including schizophrenia, bipolar disorder and major depression, are projected to lead global disease burden within the next decade. Pharmacotherapy, the primary--albeit often ineffective--treatment method, has remained largely unchanged over the past 50 years, highlighting the need for novel target discovery and improved mechanism-based treatments. Here, we examined in wild type mice the impact of chronic, systemic treatment with Compound 60 (Cpd-60), a slow-binding, benzamide-based inhibitor of the class I histone deacetylase (HDAC) family members, HDAC1 and HDAC2, in mood-related behavioral assays responsive to clinically effective drugs. Cpd-60 treatment for one week was associated with attenuated locomotor activity following acute amphetamine challenge. Further, treated mice demonstrated decreased immobility in the forced swim test. These changes are consistent with established effects of clinical mood stabilizers and antidepressants, respectively. Whole-genome expression profiling of specific brain regions (prefrontal cortex, nucleus accumbens, hippocampus) from mice treated with Cpd-60 identified gene expression changes, including a small subset of transcripts that significantly overlapped those previously reported in lithium-treated mice. HDAC inhibition in brain was confirmed by increased histone acetylation both globally and, using chromatin immunoprecipitation, at the promoter regions of upregulated transcripts, a finding consistent with in vivo engagement of HDAC targets. In contrast, treatment with suberoylanilide hydroxamic acid (SAHA), a non-selective fast-binding, hydroxamic acid HDAC 1/2/3/6 inhibitor, was sufficient to increase histone acetylation in brain, but did not alter mood-related behaviors and had dissimilar transcriptional regulatory effects compared to Cpd-60. These results provide evidence that selective inhibition of HDAC1 and HDAC2 in brain may provide an epigenetic-based target for developing improved treatments for mood disorders and other brain disorders with altered chromatin-mediated neuroplasticity.


Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome.

  • Steven D Sheridan‎ et al.
  • PloS one‎
  • 2011‎

Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. In addition to cognitive deficits, FXS patients exhibit hyperactivity, attention deficits, social difficulties, anxiety, and other autistic-like behaviors. FXS is caused by an expanded CGG trinucleotide repeat in the 5' untranslated region of the Fragile X Mental Retardation (FMR1) gene leading to epigenetic silencing and loss of expression of the Fragile X Mental Retardation protein (FMRP). Despite the known relationship between FMR1 CGG repeat expansion and FMR1 silencing, the epigenetic modifications observed at the FMR1 locus, and the consequences of the loss of FMRP on human neurodevelopment and neuronal function remain poorly understood. To address these limitations, we report on the generation of induced pluripotent stem cell (iPSC) lines from multiple patients with FXS and the characterization of their differentiation into post-mitotic neurons and glia. We show that clones from reprogrammed FXS patient fibroblast lines exhibit variation with respect to the predominant CGG-repeat length in the FMR1 gene. In two cases, iPSC clones contained predominant CGG-repeat lengths shorter than measured in corresponding input population of fibroblasts. In another instance, reprogramming a mosaic patient having both normal and pre-mutation length CGG repeats resulted in genetically matched iPSC clonal lines differing in FMR1 promoter CpG methylation and FMRP expression. Using this panel of patient-specific, FXS iPSC models, we demonstrate aberrant neuronal differentiation from FXS iPSCs that is directly correlated with epigenetic modification of the FMR1 gene and a loss of FMRP expression. Overall, these findings provide evidence for a key role for FMRP early in human neurodevelopment prior to synaptogenesis and have implications for modeling of FXS using iPSC technology. By revealing disease-associated cellular phenotypes in human neurons, these iPSC models will aid in the discovery of novel therapeutics for FXS and other autism-spectrum disorders sharing common pathophysiology.


Activation of WNT and CREB signaling pathways in human neuronal cells in response to the Omega-3 fatty acid docosahexaenoic acid (DHA).

  • Wen-Ning Zhao‎ et al.
  • Molecular and cellular neurosciences‎
  • 2019‎

A subset of individuals with major depressive disorder (MDD) elects treatment with complementary and alternative medicines (CAMs), including the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Previous studies in rodents suggest that DHA modulates neurodevelopmental processes, including adult neurogenesis and neuroplasticity, but the molecular and cellular mechanisms of DHA's potential therapeutic effect in the context of human neurobiology have not been well established. Here we sought to address this knowledge gap by investigating the effects of DHA using human iPSC-derived neural progenitor cells (NPCs) and post-mitotic neurons using pathway-selective reporter genes, multiplexed mRNA expression profiling, and a panel of metabolism-based viability assays. Finally, real-time, live-cell imaging was employed to monitor neurite outgrowth upon DHA treatment. Overall, these studies showed that DHA treatment (0-50 μM) significantly upregulated both WNT and CREB signaling pathways in human neuronal cells in a dose-dependent manner with 2- to 3-fold increases in pathway activation. Additionally, we observed that DHA treatment enhanced survival of iPSC-derived NPCs and differentiation of post-mitotic neurons with live-cell imaging, revealing increased neurite outgrowth with DHA treatment within 24 h. Taken together, this study provides evidence that DHA treatment activates critical pathways regulating neuroplasticity, which may contribute to enhanced neuronal cell viability and neuronal connectivity. The extent to which these pathways represent molecular mechanisms underlying the potential beneficial effects of omega-3 fatty acids in MDD and other brain disorders merits further investigation.


HDAC1 modulates OGG1-initiated oxidative DNA damage repair in the aging brain and Alzheimer's disease.

  • Ping-Chieh Pao‎ et al.
  • Nature communications‎
  • 2020‎

DNA damage contributes to brain aging and neurodegenerative diseases. However, the factors stimulating DNA repair to stave off functional decline remain obscure. We show that HDAC1 modulates OGG1-initated 8-oxoguanine (8-oxoG) repair in the brain. HDAC1-deficient mice display age-associated DNA damage accumulation and cognitive impairment. HDAC1 stimulates OGG1, a DNA glycosylase known to remove 8-oxoG lesions that are associated with transcriptional repression. HDAC1 deficiency causes impaired OGG1 activity, 8-oxoG accumulation at the promoters of genes critical for brain function, and transcriptional repression. Moreover, we observe elevated 8-oxoG along with reduced HDAC1 activity and downregulation of a similar gene set in the 5XFAD mouse model of Alzheimer's disease. Notably, pharmacological activation of HDAC1 alleviates the deleterious effects of 8-oxoG in aged wild-type and 5XFAD mice. Our work uncovers important roles for HDAC1 in 8-oxoG repair and highlights the therapeutic potential of HDAC1 activation to counter functional decline in brain aging and neurodegeneration.


A psychiatric disease-related circular RNA controls synaptic gene expression and cognition.

  • Amber J Zimmerman‎ et al.
  • Molecular psychiatry‎
  • 2020‎

Although circular RNAs (circRNAs) are enriched in the mammalian brain, very little is known about their potential involvement in brain function and psychiatric disease. Here, we show that circHomer1a, a neuronal-enriched circRNA abundantly expressed in the frontal cortex, derived from Homer protein homolog 1 (HOMER1), is significantly reduced in both the prefrontal cortex (PFC) and induced pluripotent stem cell-derived neuronal cultures from patients with schizophrenia (SCZ) and bipolar disorder (BD). Moreover, alterations in circHomer1a were positively associated with the age of onset of SCZ in both the dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC). No correlations between the age of onset of SCZ and linear HOMER1 mRNA were observed, whose expression was mostly unaltered in BD and SCZ postmortem brain. Using in vivo circRNA-specific knockdown of circHomer1a in mouse PFC, we show that it modulates the expression of numerous alternative mRNA transcripts from genes involved in synaptic plasticity and psychiatric disease. Intriguingly, in vivo circHomer1a knockdown in mouse OFC resulted in specific deficits in OFC-mediated cognitive flexibility. Lastly, we demonstrate that the neuronal RNA-binding protein HuD binds to circHomer1a and can influence its synaptic expression in the frontal cortex. Collectively, our data uncover a novel psychiatric disease-associated circRNA that regulates synaptic gene expression and cognitive flexibility.


WNT/β-Catenin Pathway and Epigenetic Mechanisms Regulate the Pitt-Hopkins Syndrome and Schizophrenia Risk Gene TCF4.

  • Krista M Hennig‎ et al.
  • Molecular neuropsychiatry‎
  • 2017‎

Genetic variation within the transcription factor TCF4 locus can cause the intellectual disability and developmental disorder Pitt-Hopkins syndrome (PTHS), whereas single-nucleotide polymorphisms within noncoding regions are associated with schizophrenia. These genetic findings position TCF4 as a link between transcription and cognition; however, the neurobiology of TCF4 remains poorly understood. Here, we quantitated multiple distinct TCF4 transcript levels in human induced pluripotent stem cell-derived neural progenitors and differentiated neurons, and PTHS patient fibroblasts. We identify two classes of pharmacological treatments that regulate TCF4 expression: WNT pathway activation and inhibition of class I histone deacetylases. In PTHS fibroblasts, both of these perturbations upregulate a subset of TCF4 transcripts. Finally, using chromatin immunoprecipitation sequencing in conjunction with genome-wide transcriptome analysis, we identified TCF4 target genes that may mediate the effect of TCF4 loss on neuroplasticity. Our studies identify new pharmacological assays, tools, and targets for the development of therapeutics for cognitive disorders.


Chemogenomic analysis reveals key role for lysine acetylation in regulating Arc stability.

  • Jasmin Lalonde‎ et al.
  • Nature communications‎
  • 2017‎

The role of Arc in synaptic plasticity and memory consolidation has been investigated for many years with recent evidence that defects in the expression or activity of this immediate-early gene may also contribute to the pathophysiology of brain disorders including schizophrenia and fragile X syndrome. These results bring forward the concept that reversing Arc abnormalities could provide an avenue to improve cognitive or neurological impairments in different disease contexts, but how to achieve this therapeutic objective has remained elusive. Here, we present results from a chemogenomic screen that probed a mechanistically diverse library of small molecules for modulators of BDNF-induced Arc expression in primary cortical neurons. This effort identified compounds with a range of influences on Arc, including promoting its acetylation-a previously uncharacterized post-translational modification of this protein. Together, our data provide insights into the control of Arc that could be targeted to harness neuroplasticity for clinical applications.


Zinc-dependent histone deacetylases drive neutrophil extracellular trap formation and potentiate local and systemic inflammation.

  • Valentina Poli‎ et al.
  • iScience‎
  • 2021‎

Neutrophil extracellular traps (NETs) have been implicated in the pathogenesis of acute respiratory distress syndrome (ARDS) driven by viruses or bacteria, as well as in numerous immune-mediated disorders. Histone citrullination by the enzyme peptidylarginine deiminase 4 (PAD4) and the consequent decondensation of chromatin are hallmarks in the induction of NETs. Nevertheless, additional histone modifications that may govern NETosis are largely overlooked. Herein, we show that histone deacetylases (HDACs) play critical roles in driving NET formation in human and mouse neutrophils. HDACs belonging to the zinc-dependent lysine deacetylases family are necessary to deacetylate histone H3, thus allowing the activity of PAD4 and NETosis. Of note, HDAC inhibition in mice protects against microbial-induced pneumonia and septic shock, decreasing NETosis and inflammation. Collectively, our findings illustrate a new fundamental step that governs the release of NETs and points to HDAC inhibitors as therapeutic agents that may be used to protect against ARDS and sepsis.


A bidirectional competitive interaction between circHomer1 and Homer1b within the orbitofrontal cortex regulates reversal learning.

  • Alexander K Hafez‎ et al.
  • Cell reports‎
  • 2022‎

Although circular RNAs (circRNAs) are enriched in the brain, their relevance for brain function and psychiatric disorders is poorly understood. Here, we show that circHomer1 is inversely associated with relative HOMER1B mRNA isoform levels in both the orbitofrontal cortex (OFC) and stem-cell-derived neuronal cultures of subjects with psychiatric disorders. We further demonstrate that in vivo circHomer1 knockdown (KD) within the OFC can inhibit the synaptic expression of Homer1b mRNA. Furthermore, we show that circHomer1 directly binds to Homer1b mRNA and that Homer1b-specific KD increases synaptic circHomer1 levels and improves OFC-mediated behavioral flexibility. Importantly, double circHomer1 and Homer1b in vivo co-KD results in a complete rescue in circHomer1-associated alterations in both chance reversal learning and synaptic gene expression. Lastly, we uncover an RNA-binding protein that can directly bind to circHomer1 and promote its biogenesis. Taken together, our data provide mechanistic insights into the importance of circRNAs in brain function and disease.


Discovery and Optimization of Tau Targeted Protein Degraders Enabled by Patient Induced Pluripotent Stem Cells-Derived Neuronal Models of Tauopathy.

  • M Catarina Silva‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2022‎

Accumulation of misfolded, aggregating proteins concurrent with disease onset and progression is a hallmark of neurodegenerative proteinopathies. An important class of these are tauopathies, such as frontotemporal dementia (FTD) and Alzheimer's disease (AD), associated with accumulation of aberrant forms of tau protein in the brain. Pathological tau undergoes abnormal post-translational modifications, misfolding, oligomerization and changes in solubility, cellular redistribution, and spreading. Development and testing of experimental therapeutics that target these pathological tau conformers requires use of cellular models that recapitulate neuronal endogenous, non-heterologous tau expression under genomic and physiological contexts relevant to disease. In this study, we employed FTD-patient induced pluripotent stem cells (iPSC)-derived neurons, expressing a tau variant or mutation, as primary models for driving a medicinal chemistry campaign around tau targeting degrader series. Our screening goal was to establish structure-activity relationships (SAR) for the different chemical series to identify the molecular composition that most efficiently led to tau degradation in human FTD ex vivo neurons. We describe the identification of the lead compound QC-01-175 and follow-up optimization strategies for this molecule. We present three final lead molecules with tau degradation activity in mutant neurons, which establishes potential disease relevance and will drive future studies on specificity and pharmacological properties.


Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models.

  • M Catarina Silva‎ et al.
  • eLife‎
  • 2019‎

Tauopathies are neurodegenerative diseases characterized by aberrant forms of tau protein accumulation leading to neuronal death in focal brain areas. Positron emission tomography (PET) tracers that bind to pathological tau are used in diagnosis, but there are no current therapies to eliminate these tau species. We employed targeted protein degradation technology to convert a tau PET-probe into a functional degrader of pathogenic tau. The hetero-bifunctional molecule QC-01-175 was designed to engage both tau and Cereblon (CRBN), a substrate-receptor for the E3-ubiquitin ligase CRL4CRBN, to trigger tau ubiquitination and proteasomal degradation. QC-01-175 effected clearance of tau in frontotemporal dementia (FTD) patient-derived neuronal cell models, with minimal effect on tau from neurons of healthy controls, indicating specificity for disease-relevant forms. QC-01-175 also rescued stress vulnerability in FTD neurons, phenocopying CRISPR-mediated MAPT-knockout. This work demonstrates that aberrant tau in FTD patient-derived neurons is amenable to targeted degradation, representing an important advance for therapeutics.


An epigenetic blockade of cognitive functions in the neurodegenerating brain.

  • Johannes Gräff‎ et al.
  • Nature‎
  • 2012‎

Cognitive decline is a debilitating feature of most neurodegenerative diseases of the central nervous system, including Alzheimer's disease. The causes leading to such impairment are only poorly understood and effective treatments are slow to emerge. Here we show that cognitive capacities in the neurodegenerating brain are constrained by an epigenetic blockade of gene transcription that is potentially reversible. This blockade is mediated by histone deacetylase 2, which is increased by Alzheimer's-disease-related neurotoxic insults in vitro, in two mouse models of neurodegeneration and in patients with Alzheimer's disease. Histone deacetylase 2 associates with and reduces the histone acetylation of genes important for learning and memory, which show a concomitant decrease in expression. Importantly, reversing the build-up of histone deacetylase 2 by short-hairpin-RNA-mediated knockdown unlocks the repression of these genes, reinstates structural and synaptic plasticity, and abolishes neurodegeneration-associated memory impairments. These findings advocate for the development of selective inhibitors of histone deacetylase 2 and suggest that cognitive capacities following neurodegeneration are not entirely lost, but merely impaired by this epigenetic blockade.


Synapse microarray identification of small molecules that enhance synaptogenesis.

  • Peng Shi‎ et al.
  • Nature communications‎
  • 2011‎

Synaptic function is affected in many brain diseases and disorders. Technologies for large-scale synapse assays can facilitate identification of drug leads. Here we report a 'synapse microarray' technology that enables ultra-sensitive, high-throughput and quantitative screening of synaptogenesis. Our platform enables the induction of synaptic structures in regular arrays by precise positioning of non-neuronal cells expressing synaptic proteins, while allowing neurites to grow freely around these cells. The technology increases by tenfold the sensitivity of the traditional assays, and simultaneously decreases the time required to capture synaptogenic events by an order of magnitude. It is readily incorporated into multiwell formats compatible with industrial high-throughput screening platforms. Using this technology, we screened a chemical library, and identified novel histone deacetylase (HDAC) inhibitors that improve neuroligin-1-induced synaptogenesis by modulating class-I HDACs. We also found a structure-activity relationship for designing novel potent histone deacetylase inhibitors, which can be applied towards development of new therapeutics.


Traditional and systems biology based drug discovery for the rare tumor syndrome neurofibromatosis type 2.

  • Synodos for NF2 Consortium‎ et al.
  • PloS one‎
  • 2018‎

Neurofibromatosis 2 (NF2) is a rare tumor suppressor syndrome that manifests with multiple schwannomas and meningiomas. There are no effective drug therapies for these benign tumors and conventional therapies have limited efficacy. Various model systems have been created and several drug targets have been implicated in NF2-driven tumorigenesis based on known effects of the absence of merlin, the product of the NF2 gene. We tested priority compounds based on known biology with traditional dose-concentration studies in meningioma and schwann cell systems. Concurrently, we studied functional kinome and gene expression in these cells pre- and post-treatment to determine merlin deficient molecular phenotypes. Cell viability results showed that three agents (GSK2126458, Panobinostat, CUDC-907) had the greatest activity across schwannoma and meningioma cell systems, but merlin status did not significantly influence response. In vivo, drug effect was tumor specific with meningioma, but not schwannoma, showing response to GSK2126458 and Panobinostat. In culture, changes in both the transcriptome and kinome in response to treatment clustered predominantly based on tumor type. However, there were differences in both gene expression and functional kinome at baseline between meningioma and schwannoma cell systems that may form the basis for future selective therapies. This work has created an openly accessible resource (www.synapse.org/SynodosNF2) of fully characterized isogenic schwannoma and meningioma cell systems as well as a rich data source of kinome and transcriptome data from these assay systems before and after treatment that enables single and combination drug discovery based on molecular phenotype.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: