Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Neoadjuvant in situ vaccination with cowpea mosaic virus as a novel therapy against canine inflammatory mammary cancer.

  • Daniel Alonso-Miguel‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2022‎

Inflammatory mammary cancer (IMC), the counterpart of human inflammatory breast cancer (IBC), is the deadliest form of canine mammary tumors. IMC patients lack specific therapy and have poor outcomes. This proof-of-principle preclinical study evaluated the efficacy, safety, and effect on survival of neoadjuvant intratumoral (in situ) empty cowpea mosaic virus (eCPMV) immunotherapy in companion dogs diagnosed with IMC.


Symptomatic and preventive effects of the novel phosphodiesterase-9 inhibitor BI 409306 in an immune-mediated model of neurodevelopmental disorders.

  • Joseph Scarborough‎ et al.
  • Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology‎
  • 2021‎

BI 409306, a phosphodiesterase-9 inhibitor under development for treatment of schizophrenia and attenuated psychosis syndrome (APS), promotes synaptic plasticity and cognition. Here, we explored the effects of BI 409306 treatment in the polyriboinosinic-polyribocytidilic acid (poly[I:C])-based mouse model of maternal immune activation (MIA), which is relevant to schizophrenia and APS. In Study 1, adult offspring received BI 409306 0.2, 0.5, or 1 mg/kg or vehicle to establish an active dose. In Study 2, adult offspring received BI 409306 1 mg/kg and/or risperidone 0.025 mg/kg, risperidone 0.05 mg/kg, or vehicle, to evaluate BI 409306 as add-on to standard therapy for schizophrenia. In Study 3, offspring received BI 409306 1 mg/kg during adolescence only, or continually into adulthood to evaluate preventive effects of BI 409306. We found that BI 409306 significantly mitigated MIA-induced social interaction deficits and amphetamine-induced hyperlocomotion, but not prepulse inhibition impairments, in a dose-dependent manner (Study 1). Furthermore, BI 409306 1 mg/kg alone or in combination with risperidone 0.025 mg/kg significantly reversed social interaction deficits and attenuated amphetamine-induced hyperlocomotion in MIA offspring (Study 2). Finally, we revealed that BI 409306 1 mg/kg treatment restricted to adolescence prevented adult deficits in social interaction, whereas continued treatment into adulthood also significantly reduced amphetamine-induced hyperlocomotion (Study 3). Taken together, our findings suggest that symptomatic treatment with BI 409306 can restore social interaction deficits and dopaminergic dysfunctions in a MIA model of neurodevelopmental disruption, lending preclinical support to current clinical trials of BI 409306 in patients with schizophrenia. Moreover, BI 409306 given during adolescence has preventive effects on adult social interaction deficits in this model, supporting its use in people with APS.


A ribonucleoprotein transfection strategy for CRISPR/Cas9-mediated gene editing and single cell cloning in rainbow trout cells.

  • Marina Zoppo‎ et al.
  • Cell & bioscience‎
  • 2021‎

The advent of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology marked the beginning of a new era in the field of molecular biology, allowing the efficient and precise creation of targeted mutations in the genome of every living cell. Since its discovery, different gene editing approaches based on the CRISPR/Cas9 technology have been widely established in mammalian cell lines, while limited knowledge is available on genetic manipulation in fish cell lines. In this work, we developed a strategy to CRISPR/Cas9 gene edit rainbow trout (Oncorhynchus mykiss) cell lines and to generate single cell clone-derived knock-out cell lines, focusing on the phase I biotransformation enzyme encoding gene, cyp1a1, and on the intestinal cell line, RTgutGC, as example.


Long-read RNA-seq atlas of novel microglia isoforms elucidates disease-associated genetic regulation of splicing.

  • Jack Humphrey‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2023‎

Microglia, the innate immune cells of the central nervous system, have been genetically implicated in multiple neurodegenerative diseases. We previously mapped the genetic regulation of gene expression and mRNA splicing in human microglia, identifying several loci where common genetic variants in microglia-specific regulatory elements explain disease risk loci identified by GWAS. However, identifying genetic effects on splicing has been challenging due to the use of short sequencing reads to identify causal isoforms. Here we present the isoform-centric microglia genomic atlas (isoMiGA) which leverages the power of long-read RNA-seq to identify 35,879 novel microglia isoforms. We show that the novel microglia isoforms are involved in stimulation response and brain region specificity. We then quantified the expression of both known and novel isoforms in a multi-ethnic meta-analysis of 555 human microglia short-read RNA-seq samples from 391 donors, the largest to date, and found associations with genetic risk loci in Alzheimer's disease and Parkinson's disease. We nominate several loci that may act through complex changes in isoform and splice site usage.


Non-invasive modulation reduces repetitive behavior in a rat model through the sensorimotor cortico-striatal circuit.

  • Henriette Edemann-Callesen‎ et al.
  • Translational psychiatry‎
  • 2018‎

Involuntary movements as seen in repetitive disorders such as Tourette Syndrome (TS) results from cortical hyperexcitability that arise due to striato-thalamo-cortical circuit (STC) imbalance. Transcranial direct current stimulation (tDCS) is a stimulation procedure that changes cortical excitability, yet its relevance in repetitive disorders such as TS remains largely unexplored. Here, we employed the dopamine transporter-overexpressing (DAT-tg) rat model to investigate behavioral and neurobiological effects of frontal tDCS. The outcome of tDCS was pathology dependent, as anodal tDCS decreased repetitive behavior in the DAT-tg rats yet increased it in wild-type (wt) rats. Extensive deep brain stimulation (DBS) application and computational modeling assigned the response in DAT-tg rats to the sensorimotor pathway. Neurobiological assessment revealed cortical activity changes and increase in striatal inhibitory properties in the DAT-tg rats. Our findings show that tDCS reduces repetitive behavior in the DAT-tg rat through modulation of the sensorimotor STC circuit. This sets the stage for further investigating the usage of tDCS in repetitive disorders such as TS.


Adolescence is a sensitive period for prefrontal microglia to act on cognitive development.

  • Sina M Schalbetter‎ et al.
  • Science advances‎
  • 2022‎

The prefrontal cortex (PFC) is a cortical brain region that regulates various cognitive functions. One distinctive feature of the PFC is its protracted adolescent maturation, which is necessary for acquiring mature cognitive abilities in adulthood. Here, we show that microglia, the brain's resident immune cells, contribute to this maturational process. We find that transient and cell-specific deficiency of prefrontal microglia in adolescence is sufficient to induce an adult emergence of PFC-associated impairments in cognitive functions, dendritic complexity, and synaptic structures. While prefrontal microglia deficiency in adolescence also altered the excitatory-inhibitory balance in adult prefrontal circuits, there were no cognitive sequelae when prefrontal microglia were depleted in adulthood. Thus, our findings identify adolescence as a sensitive period for prefrontal microglia to act on cognitive development.


Pegaspargase-modified risk-oriented program for adult acute lymphoblastic leukemia: results of the GIMEMA LAL1913 trial.

  • Renato Bassan‎ et al.
  • Blood advances‎
  • 2023‎

Pediatric-inspired chemotherapy is the standard of care for younger adults with Philadelphia chromosome-negative acute lymphoblastic leukemia/lymphoma (Ph- ALL/LL). In LAL1913 trial, the Gruppo Italiano Malattie EMatologiche dell'Adulto added pegaspargase 2000 IU/m2 to courses 1, 2, 5, and 6 of an 8-block protocol for patients aged from 18 to 65 years, with dose reductions in patients aged >55 years. Responders were risk stratified for allogeneic hematopoietic cell transplantation (HCT) or maintenance per clinical characteristics and minimal residual disease (MRD). Of 203 study patients (median age, 39.8 years), 91% achieved a complete remission. The 3-year overall survival, event-free, and disease-free survival (DFS) rates were 66.7%, 57.7%, and 63.3%, respectively, fulfilling the primary study end point of a 2-year DFS >55%. Although based on the intention-to-treat, the DFS being 74% and 50% in the chemotherapy (n = 94) and HCT (n = 91) assignment cohorts, respectively, a time-dependent analysis proved the value of HCT in patients who were eligible (DFS HCT 70% vs no HCT 26%; P <.0001). In multivariate analysis, age and MRD were independent factors predicting DFS rates of 86% (age ≤ 40 and MRD-negative), 64%-65% (MRD-positive or age > 40) and 25% (age > 40 and MRD-positive); P < .0001. Grade ≥2 pegaspargase toxicity was mainly observed at course 1, contributing to induction death in 2 patients but was rare thereafter. This program improved outcomes of patients with Ph- ALL/LL aged up to 65 years in a multicenter national setting. This trial was registered at www.clinicaltrials.gov as #NCT02067143.


High Throughput Molecular Characterization of Normal Karyotype Acute Myeloid Leukemia in the Context of the Prospective Trial 02/06 of the Northern Italy Leukemia Group (NILG).

  • Silvia Salmoiraghi‎ et al.
  • Cancers‎
  • 2020‎

By way of a Next-Generation Sequencing NGS high throughput approach, we defined the mutational profile in a cohort of 221 normal karyotype acute myeloid leukemia (NK-AML) enrolled into a prospective randomized clinical trial, designed to evaluate an intensified chemotherapy program for remission induction. NPM1, DNMT3A, and FLT3-ITD were the most frequently mutated genes while DNMT3A, FLT3, IDH1, PTPN11, and RAD21 mutations were more common in the NPM1 mutated patients (p < 0.05). IDH1 R132H mutation was strictly associated with NPM1 mutation and mutually exclusive with RUNX1 and ASXL1. In the whole cohort of NK-AML, no matter the induction chemotherapy used, by multivariate analysis, the achievement of complete remission was negatively affected by the SRSF2 mutation. Alterations of FLT3 (FLT3-ITD) and U2AF1 were associated with a worse overall and disease-free survival (p < 0.05). FLT3-ITD positive patients who proceeded to alloHSCT had a survival probability similar to FLT3-ITD negative patients and the transplant outcome was no different when comparing high and low-AR-FLT3-ITD subgroups in terms of both OS and DFS. In conclusion, a comprehensive molecular profile for NK-AML allows for the identification of genetic lesions associated to different clinical outcomes and the selection of the most appropriate and effective treatment strategies, including stem cell transplantation and targeted therapies.


A novel murine model to study the impact of maternal depression and antidepressant treatment on biobehavioral functions in the offspring.

  • Joseph Scarborough‎ et al.
  • Molecular psychiatry‎
  • 2021‎

Antenatal psychopathology negatively affects obstetric outcomes and exerts long-term consequences on the offspring's wellbeing and mental health. However, the precise mechanisms underlying these associations remain largely unknown. Here, we present a novel model system in mice that allows for experimental investigations into the effects of antenatal depression-like psychopathology and for evaluating the influence of maternal pharmacological treatments on long-term outcomes in the offspring. This model system in based on rearing nulliparous female mice in social isolation prior to mating, leading to a depressive-like state that is initiated before and continued throughout pregnancy. Using this model, we show that the maternal depressive-like state induced by social isolation can be partially rescued by chronic treatment with the selective serotonin reuptake inhibitor, fluoxetine (FLX). Moreover, we identify numerous and partly sex-dependent behavioral and molecular abnormalities, including increased anxiety-like behavior, cognitive impairments and alterations of the amygdalar transcriptome, in offspring born to socially isolated mothers relative to offspring born to mothers that were maintained in social groups prior to conception. We also found that maternal FLX treatment was effective in preventing some of the behavioral and molecular abnormalities emerging in offspring born to socially isolated mothers. Taken together, our findings suggest that the presence of a depressive-like state during preconception and pregnancy has sex-dependent consequences on brain and behavioral functions in the offspring. At the same time, our study highlights that FLX treatment in dams with a depression-like state can prevent abnormal behavioral development in the offspring.


IL-12 protects from psoriasiform skin inflammation.

  • Paulina Kulig‎ et al.
  • Nature communications‎
  • 2016‎

Neutralization of the common p40-subunit of IL-12/23 in psoriasis patients has led to a breakthrough in the management of moderate to severe disease. Aside from neutralizing IL-23, which is thought to be responsible for the curative effect, anti-p40 therapy also interferes with IL-12 signalling and type 1 immunity. Here we dissect the individual contribution of these two cytokines to the formation of psoriatic lesions and understand the effect of therapeutic co-targeting of IL-12 and IL-23 in psoriasis. Using a preclinical model for psoriatic plaque formation we show that IL-12, in contrast to IL-23, has a regulatory function by restraining the invasion of an IL-17-committed γδT (γδT17) cell subset. We discover that IL-12 receptor signalling in keratinocytes initiates a protective transcriptional programme that limits skin inflammation, suggesting that collateral targeting of IL-12 by anti-p40 monoclonal antibodies is counterproductive in the therapy of psoriasis.


Cross-Reactivity and Functionality of Approved Human Immune Checkpoint Blockers in Dogs.

  • Stanislav Pantelyushin‎ et al.
  • Cancers‎
  • 2021‎

Rodent cancer models have limitations in predicting efficacy, tolerability and accompanying biomarkers of ICIs in humans. Companion dogs suffering from neoplastic diseases have gained attention as a highly relevant translational disease model. Despite successful reports of PD-1/PD-L1 blockade in dogs, no compounds are available for veterinary medicine.


Neuronal activity increases translocator protein (TSPO) levels.

  • Tina Notter‎ et al.
  • Molecular psychiatry‎
  • 2021‎

The mitochondrial protein, translocator protein (TSPO), is a widely used biomarker of neuroinflammation, but its non-selective cellular expression pattern implies roles beyond inflammatory processes. In the present study, we investigated whether neuronal activity modifies TSPO levels in the adult central nervous system. First, we used single-cell RNA sequencing to generate a cellular landscape of basal TSPO gene expression in the hippocampus of adult (12 weeks old) C57BL6/N mice, followed by confocal laser scanning microscopy to verify TSPO protein in neuronal and non-neuronal cell populations. We then quantified TSPO mRNA and protein levels after stimulating neuronal activity with distinct stimuli, including designer receptors exclusively activated by designer drugs (DREADDs), exposure to a novel environment and acute treatment with the psychostimulant drug, amphetamine. Single-cell RNA sequencing demonstrated a non-selective and multi-cellular gene expression pattern of TSPO at basal conditions in the adult mouse hippocampus. Confocal laser scanning microscopy confirmed that TSPO protein is present in neuronal and non-neuronal (astrocytes, microglia, vascular endothelial cells) cells of cortical (medial prefrontal cortex) and subcortical (hippocampus) brain regions. Stimulating neuronal activity through chemogenetic (DREADDs), physiological (novel environment exposure) or psychopharmacological (amphetamine treatment) approaches led to consistent increases in TSPO gene and protein levels in neurons, but not in microglia or astrocytes. Taken together, our findings show that neuronal activity has the potential to modify TSPO levels in the adult central nervous system. These findings challenge the general assumption that altered TSPO expression or binding unequivocally mirrors ongoing neuroinflammation and emphasize the need to consider non-inflammatory interpretations in some physiological or pathological contexts.


Neurons under T Cell Attack Coordinate Phagocyte-Mediated Synaptic Stripping.

  • Giovanni Di Liberto‎ et al.
  • Cell‎
  • 2018‎

Inflammatory disorders of the CNS are frequently accompanied by synaptic loss, which is thought to involve phagocytic microglia and complement components. However, the mechanisms accounting for aberrant synaptic connectivity in the context of CD8+ T cell-driven neuronal damage are poorly understood. Here, we profiled the neuronal translatome in a murine model of encephalitis caused by CD8+ T cells targeting antigenic neurons. Neuronal STAT1 signaling and downstream CCL2 expression were essential for apposition of phagocytes, ensuing synaptic loss and neurological disease. Analogous observations were made in the brains of Rasmussen's encephalitis patients. In this devastating CD8+ T cell-driven autoimmune disease, neuronal STAT1 phosphorylation and CCL2 expression co-clustered with infiltrating CD8+ T cells as well as phagocytes. Taken together, our findings uncover an active role of neurons in coordinating phagocyte-mediated synaptic loss and highlight neuronal STAT1 and CCL2 as critical steps in this process that are amenable to pharmacological interventions.


Enzymatic Dissociation Induces Transcriptional and Proteotype Bias in Brain Cell Populations.

  • Daniele Mattei‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Different cell isolation techniques exist for transcriptomic and proteotype profiling of brain cells. Here, we provide a systematic investigation of the influence of different cell isolation protocols on transcriptional and proteotype profiles in mouse brain tissue by taking into account single-cell transcriptomics of brain cells, proteotypes of microglia and astrocytes, and flow cytometric analysis of microglia. We show that standard enzymatic digestion of brain tissue at 37 °C induces profound and consistent alterations in the transcriptome and proteotype of neuronal and glial cells, as compared to an optimized mechanical dissociation protocol at 4 °C. These findings emphasize the risk of introducing technical biases and biological artifacts when implementing enzymatic digestion-based isolation methods for brain cell analyses.


Analyses of circRNA Expression throughout the Light-Dark Cycle Reveal a Strong Regulation of Cdr1as, Associated with Light Entrainment in the SCN.

  • Andranik Ivanov‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Circular RNAs (circRNAs) are a large class of relatively stable RNA molecules that are highly expressed in animal brains. Many circRNAs have been associated with CNS disorders accompanied by an aberrant wake-sleep cycle. However, the regulation of circRNAs in brain homeostasis over daily light-dark (LD) cycles has not been characterized. Here, we aim to quantify the daily expression changes of circRNAs in physiological conditions in healthy adult animals. Using newly generated and public RNA-Seq data, we monitored circRNA expression throughout the 12:12 h LD cycle in various mouse brain regions. We identified that Cdr1as, a conserved circRNA that regulates synaptic transmission, is highly expressed in the suprachiasmatic nucleus (SCN), the master circadian pacemaker. Despite its high stability, Cdr1as has a very dynamic expression in the SCN throughout the LD cycle, as well as a significant regulation in the hippocampus following the entry into the dark phase. Computational integration of different public datasets predicted that Cdr1as is important for regulating light entrainment in the SCN. We hypothesize that the expression changes of Cdr1as in the SCN, particularly during the dark phase, are associated with light-induced phase shifts. Importantly, our work revises the current beliefs about natural circRNA stability and suggests that the time component must be considered when studying circRNA regulation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: