Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Nonhypoxic regulation and role of hypoxia-inducible factor 1 in aromatase inhibitor resistant breast cancer.

  • Armina A Kazi‎ et al.
  • Breast cancer research : BCR‎
  • 2014‎

Although aromatase inhibitors (AIs; for example, letrozole) are highly effective in treating estrogen receptor positive (ER+) breast cancer, a significant percentage of patients either do not respond to AIs or become resistant to them. Previous studies suggest that acquired resistance to AIs involves a switch from dependence on ER signaling to dependence on growth factor-mediated pathways, such as human epidermal growth factor receptor-2 (HER2). However, the role of HER2, and the identity of other relevant factors that may be used as biomarkers or therapeutic targets remain unknown. This study investigated the potential role of transcription factor hypoxia inducible factor 1 (HIF-1) in acquired AI resistance, and its regulation by HER2.


Next generation of immune checkpoint therapy in cancer: new developments and challenges.

  • Julian A Marin-Acevedo‎ et al.
  • Journal of hematology & oncology‎
  • 2018‎

Immune checkpoints consist of inhibitory and stimulatory pathways that maintain self-tolerance and assist with immune response. In cancer, immune checkpoint pathways are often activated to inhibit the nascent anti-tumor immune response. Immune checkpoint therapies act by blocking or stimulating these pathways and enhance the body's immunological activity against tumors. Cytotoxic T lymphocyte-associated molecule-4 (CTLA-4), programmed cell death receptor-1 (PD-1), and programmed cell death ligand-1(PD-L1) are the most widely studied and recognized inhibitory checkpoint pathways. Drugs blocking these pathways are currently utilized for a wide variety of malignancies and have demonstrated durable clinical activities in a subset of cancer patients. This approach is rapidly extending beyond CTLA-4 and PD-1/PD-L1. New inhibitory pathways are under investigation, and drugs blocking LAG-3, TIM-3, TIGIT, VISTA, or B7/H3 are being investigated. Furthermore, agonists of stimulatory checkpoint pathways such as OX40, ICOS, GITR, 4-1BB, CD40, or molecules targeting tumor microenvironment components like IDO or TLR are under investigation. In this article, we have provided a comprehensive review of immune checkpoint pathways involved in cancer immunotherapy, and discuss their mechanisms and the therapeutic interventions currently under investigation in phase I/II clinical trials. We also reviewed the limitations, toxicities, and challenges and outline the possible future research directions.


The interplay of epigenetic therapy and immunity in locally recurrent or metastatic estrogen receptor-positive breast cancer: Correlative analysis of ENCORE 301, a randomized, placebo-controlled phase II trial of exemestane with or without entinostat.

  • Yusuke Tomita‎ et al.
  • Oncoimmunology‎
  • 2016‎

Entinostat, a class I-selective histone deacetylase inhibitor, has shown promising activity in ENCORE 301, a randomized, placebo-controlled, phase II trial of exemestane with or without entinostat in women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on a nonsteroidal aromatase inhibitor. ENCORE 301 showed an 8.3-mo improvement in median overall survival among patients who received entinostat. We investigated the impact of entinostat on immune subsets with CD40, HLA-DR, and immune checkpoint receptor expression analyses in 34 patient blood samples from ENCORE 301. We found that entinostat significantly decreased granulocytic and monocytic MDSCs at cycle 1 day 15. MDSC CD40 was significantly downregulated by entinostat. A significant increase in HLA-DR expression on CD14+ monocytes by entinostat was observed. Entinostat did not impact T-cell subsets or T-cell immune checkpoint receptor expression. Our findings suggest that a significant interplay between this epigenetic regimen and host immune homeostatic mechanisms may impact therapeutic outcome.


Peripheral blood biomarkers correlate with outcomes in advanced non-small cell lung Cancer patients treated with anti-PD-1 antibodies.

  • Aixa E Soyano‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2018‎

Anti-programmed cell death 1 (PD-1) antibodies have demonstrated improved overall survival (OS) and progression-free survival (PFS) in a subset of patients with metastatic or locally advanced non-small cell lung cancer (NSCLC). To date, no blood biomarkers have been identified in NSCLC to predict clinical outcomes of treatment with anti-PD-1 antibodies.


The RUNX2 Transcription Factor Negatively Regulates SIRT6 Expression to Alter Glucose Metabolism in Breast Cancer Cells.

  • Moran Choe‎ et al.
  • Journal of cellular biochemistry‎
  • 2015‎

Activation of genes promoting aerobic glycolysis and suppression of mitochondrial oxidative phosphorylation is one of the hallmarks of cancer. The RUNX2 transcription factor mediates breast cancer (BC) metastasis to bone and is regulated by glucose availability. But, the mechanisms by which it regulates glucose metabolism and promotes an oncogenic phenotype are not known. RUNX2 expression in luminal BC cells correlated with lower estrogen receptor-α (ERα) levels, anchorage-independent growth, expression of glycolytic genes, increased glucose uptake, and sensitivity to glucose starvation, but not to inhibitors of oxidative phosphorylation. Conversely, RUNX2 knockdown in triple-negative BC cells inhibited mammosphere formation and glucose dependence. RUNX2 knockdown resulted in lower LDHA, HK2, and GLUT1 glycolytic gene expression, but upregulation of pyruvate dehydrogenase-A1 (PDHA1) mRNA and enzymatic activity, which was consistent with lower glycolytic potential. The NAD-dependent histone deacetylase, SIRT6, a known tumor suppressor, was a critical regulator of these RUNX2-mediated metabolic changes. RUNX2 expression resulted in elevated pAkt, HK2, and PDHK1 glycolytic protein levels that were reduced by ectopic expression of SIRT6. RUNX2 also repressed mitochondrial oxygen consumption rates (OCR), a measure of oxidative phosphorylation (respiration). Overexpression of SIRT6 increased respiration in RUNX2-positive cells, but knockdown of SIRT6 in cells expressing low RUNX2 decreased respiration. RUNX2 repressed SIRT6 expression at both the transcriptional and post-translational levels and endogenous SIRT6 expression was lower in malignant BC tissues or cell lines that expressed high levels of RUNX2. These results support a hypothesis whereby RUNX2-mediated repression of the SIRT6 tumor suppressor regulates metabolic pathways that promote BC progression.


RUNX2 and TAZ-dependent signaling pathways regulate soluble E-Cadherin levels and tumorsphere formation in breast cancer cells.

  • Jessica L Brusgard‎ et al.
  • Oncotarget‎
  • 2015‎

Intratumoral heterogeneity and treatment resistance drive breast cancer (BC) metastasis and recurrence. The RUNX2 transcription factor is upregulated in early stage luminal BC. However, the precise mechanism by which RUNX2 regulates an oncogenic phenotype in luminal BCs remains an enigma. We show that RUNX2 is predictive of poor overall survival in BC patients. RUNX2 associated with the TAZ transcriptional co-activator to promote a tumorigenic phenotype that was inhibited by knockdown of TAZ. RUNX2 increased endogenous TAZ translocation to the nucleus, which was prevented by inhibiting RUNX2. RUNX2/TAZ interaction was associated with ectodomain shedding of an oncogenic soluble E-Cadherin fragment (sE-Cad), which is known to cooperate with human epidermal growth factor receptor-2 (HER2/ErbB2) to increase BC growth. Neutralizing E-Cadherin antibodies or TAZ knockdown reduced the levels of sE-Cad in RUNX2-expressing BC cells and inhibited tumorsphere formation. RUNX2 expression also increased HER2-mediated tumorsphere size, which was reduced after treatment with the HER2-targeting agents Herceptin and lapatinib. These data support a novel role for RUNX2 in promoting an oncogenic phenotype in luminal BC in the context of TAZ, sE-Cad, and HER2. Using this signaling pathway to monitor BC cell oncogenic activity will accelerate the discovery of new therapeutic modalities to treat BC patients.


Immune responses and disease biomarker long-term changes following COVID-19 mRNA vaccination in a cohort of rheumatic disease patients.

  • Zesheng An‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2023‎

To evaluate seroreactivity and disease biomarkers after 2 or 3 doses of COVID-19 mRNA vaccines in a cohort of patients with rheumatic diseases.


Long-term cardiac outcomes of patients with HER2-positive breast cancer treated in the adjuvant lapatinib and/or trastuzumab Treatment Optimization Trial.

  • Daniel Eiger‎ et al.
  • British journal of cancer‎
  • 2020‎

Cardiotoxicity is the most significant adverse event associated with trastuzumab (T), the main component of HER2-positive breast cancer (BC) treatment. Less is known about the cardiotoxicity of dual HER2 blockade with T plus lapatinib (L), although this regimen is used in the metastatic setting.


APOBEC Mutational Signatures in Hormone Receptor-Positive Human Epidermal Growth Factor Receptor 2-Negative Breast Cancers Are Associated With Poor Outcomes on CDK4/6 Inhibitors and Endocrine Therapy.

  • Sarah Sammons‎ et al.
  • JCO precision oncology‎
  • 2022‎

APOBEC mutagenesis underlies somatic evolution and accounts for tumor heterogeneity in several cancers, including breast cancer (BC). In this study, we evaluated the characteristics of a real-world cohort for time-to-treatment discontinuation (TTD) and overall survival on CDK4/6 inhibitors (CDK4/6i) plus endocrine therapy (ET) and immune checkpoint inhibitors.


CCR5 activation and endocytosis in circulating tumor-derived cells isolated from the blood of breast cancer patients provide information about clinical outcome.

  • Ashvathi Raghavakaimal‎ et al.
  • Breast cancer research : BCR‎
  • 2022‎

CCR5 is a motility chemokine receptor implicated in tumor progression, whose activation and subsequent endocytosis may identify highly aggressive breast cancer cell subtypes likely to spread into the circulatory system.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: