Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 32 papers

Cannabinoid-Induced Stereoselective Inhibition of R-S-Oxazepam Glucuronidation: Cannabinoid-Oxazepam Drug Interactions.

  • Keti Bardhi‎ et al.
  • Pharmaceutics‎
  • 2024‎

Benzodiazepines (BZDs) such as oxazepam are commonly prescribed depressant drugs known for their anxiolytic, hypnotic, muscle relaxant, and anticonvulsant effects and are frequently used in conjunction with other illicit drugs including cannabis. Oxazepam is metabolized in an enantiomeric-specific manner by glucuronidation, with S-oxazepam metabolized primarily by UGT2B15 and R-oxazepam glucuronidation mediated by both UGT 1A9 and 2B7. The goal of the present study was to evaluate the potential inhibitory effects of major cannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), and major THC metabolites, 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (11-COOH-THC), on the UGT-mediated metabolism of R- and S-oxazepam. The cannabinoids and metabolites were screened as inhibitors of R- and S-oxazepam glucuronidation in microsomes isolated from HEK293 cells overexpressing individual UGT enzymes (rUGTs). The IC50 values were determined in human liver microsomes (HLM), human kidney microsomes (HKM), and rUGTs and utilized to estimate the nonspecific, binding-corrected Ki (Ki,u) values and predict the area under the concentration-time curve ratio (AUCR). The estimated Ki,u values observed in HLM for S- and R-oxazepam glucuronidation by CBD, 11-OH-THC, and THC were in the micromolar range (0.82 to 3.7 µM), with the Ki,u values observed for R-oxazepam glucuronidation approximately 2- to 5-fold lower as compared to those observed for S-oxazepam glucuronidation. The mechanistic static modeling predicted a potential clinically significant interaction between oral THC and CBD with oxazepam, with the AUCR values ranging from 1.25 to 3.45. These data suggest a pharmacokinetic drug-drug interaction when major cannabinoids like CBD or THC and oxazepam are concurrently administered.


RNA-Sequencing, Connectivity Mapping, and Molecular Docking to Investigate Ligand-Protein Binding for Potential Drug Candidates for the Treatment of Wilms Tumor.

  • Jia-Yuan Luo‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2020‎

BACKGROUND Wilms tumor, or nephroblastoma, is a malignant pediatric embryonal renal tumor that has a poor prognosis. This study aimed to use bioinformatics data, RNA-sequencing, connectivity mapping, molecular docking, and ligand-protein binding to identify potential targets for drug therapy in Wilms tumor. MATERIAL AND METHODS Wilms tumor and non-tumor samples were obtained from high throughput gene expression databases, and differentially expressed genes (DEGs) were analyzed using the voom method in the limma package. The overlapping DEGs were obtained from the intersecting drug target genes using the Connectivity Map (CMap) database, and systemsDock was used for molecular docking. Gene databases were searched for gene expression profiles for complementary analysis, analysis of clinical significance, and prognosis analysis to refine the study. RESULTS From 177 cases of Wilms tumor, there were 648 upregulated genes and 342 down-regulated genes. Gene Ontology (GO) enrichment analysis showed that the identified DEGs that affected the cell cycle. After obtaining 21 candidate drugs, there were seven overlapping genes with 75 drug target genes and DEGs. Molecular docking results showed that relatively high scores were obtained when retinoic acid and the cyclin-dependent kinase inhibitor, alsterpaullone, were docked to the overlapping genes. There were significant standardized mean differences for three overlapping genes, CDK2, MAP4K4, and CRABP2. However, four upregulated overlapping genes, CDK2, MAP4K4, CRABP2, and SIRT1 had no prognostic significance. CONCLUSIONS RNA-sequencing, connectivity mapping, and molecular docking to investigate ligand-protein binding identified retinoic acid and alsterpaullone as potential drug candidates for the treatment of Wilms tumor.


Synthesis and biological evaluation of substituted acetamide derivatives as potential butyrylcholinestrase inhibitors.

  • Dehong Yu‎ et al.
  • Scientific reports‎
  • 2023‎

Alzheimer's disease (AD) is the most common type of age-related dementia. Inhibition of butyrylcholinesterase (BChE) emerge as an effective therapeutic target for AD. A series of new substituted acetamide derivatives were designed, synthesized and evaluated for their ability to inhibit BChE. The bioassay results revealed that several compounds displayed attractive inhibition against BChE). Among them, compound 8c exhibited the highest BChE inhibition with IC50 values of 3.94 μM. Lineweaver Burk plot indicated that 8c acted as a mixed-type BChE inhibitor. In addition, docking studies confirmed the results obtained through in vitro experiments, and showed that 8c bound to the catalytic anionic site (CAS) and peripheral anionic site (PAS) of BChE active site. Meanwhile, its ADME parameters were approximated using in silico method. Molecular dynamics simulation studies on the complex of 8c-BChE were performed, RMSD, RMSF, Rg, SASA, and the number of hydrogen bonds were calculated as well. These results implied that 8c could serve as appropriate lead molecule for the development of BChE inhibitor.


The Ribosomal Protein L28 Gene Induces Sorafenib Resistance in Hepatocellular Carcinoma.

  • Yi Shi‎ et al.
  • Frontiers in oncology‎
  • 2021‎

Sorafenib is the first molecular-targeted drug for the treatment of advanced hepatocellular carcinoma (HCC). However, its treatment efficiency decreases after a short period of time because of the development of drug resistance. This study investigates the role of key genes in regulating sorafenib-resistance and elucidates the mechanism of drug resistance in hepatocellular carcinoma.


Survival analysis of genome-wide profiles coupled with Connectivity Map database mining to identify potential therapeutic targets for cholangiocarcinoma.

  • Peng Lin‎ et al.
  • Oncology reports‎
  • 2018‎

Cholangiocarcinoma (CCA) is one of the most common epithelial cell malignancies worldwide. However, its prognosis is poor. The aim of the present study was to examine the prognostic landscape and potential therapeutic targets for CCA. RNA sequencing data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) dataset and processed. A total of 172 genes that were significantly associated with overall survival of patients with CCA were identified using the univariate Cox regression method. Bioinformatics tools were applied using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO). It was identified that 'Wnt signaling pathway', 'cytoplasm' and 'AT DNA binding' were the three most significant GO categories of CCA survival-associated genes. 'Transcriptional misregulation in cancer' was the most significant pathway identified in the KEGG analysis. Using the Drug-Gene Interaction database, a drug-gene interaction network was constructed, and 31 identified genes were involved in it. The most meaningful potential therapeutic targets were selected via protein-protein and gene-drug interactions. Among these genes, polo-like kinase 1 (PLK1) was identified to be a potential target due to its significant upregulation in CCA. To rapidly find molecules that may affect these genes, the Connectivity Map was queried. A series of molecules were selected for their potential anti-CCA functions. 0297417-0002B and tribenoside exhibited the highest connection scores with PLK1 via molecular docking. These findings may offer novel insights into treatment and perspectives on the future innovative treatment of CCA.


Seven oxidative stress-related genes predict the prognosis of hepatocellular carcinoma.

  • Chen Miao‎ et al.
  • Aging‎
  • 2023‎

Predicting the prognosis of hepatocellular carcinoma (HCC) is a major medical challenge and of guiding significance for treatment. This study explored the actual relevance of RNA expression in predicting HCC prognosis. Cox's multiple regression was used to establish a risk score staging classification and to predict the HCC patients' prognosis on the basis of data in the Cancer Genome Atlas (TCGA). We screened seven gene biomarkers related to the prognosis of HCC from the perspective of oxidative stress, including Alpha-Enolase 1(ENO1), N-myc downstream-regulated gene 1 (NDRG1), nucleophosmin (NPM1), metallothionein-3, H2A histone family member X, Thioredoxin reductase 1 (TXNRD1) and interleukin 33 (IL-33). Among them we measured the expression of ENO1, NGDP1, NPM1, TXNRD1 and IL-33 to investigate the reliability of the multi-index prediction. The first four markers' expressions increased successively in the paracellular tissues, the hepatocellular carcinoma samples (from patients with better prognosis) and the hepatocellular carcinoma samples (from patients with poor prognosis), while IL-33 showed the opposite trend. The seven genes increased the sensitivity and specificity of the predictive model, resulting in a significant increase in overall confidence. Compared with the patients with higher-risk scores, the survival rates with lower-risk scores are significantly increased. Risk score is more accurate in predicting the prognosis HCC patients than other clinical factors. In conclusion, we use the Cox regression model to identify seven oxidative stress-related genes, investigate the reliability of the multi-index prediction, and develop a risk staging model for predicting the prognosis of HCC patients and guiding precise treatment strategy.


The underlying molecular mechanism and potential drugs for treatment in papillary renal cell carcinoma: A study based on TCGA and Cmap datasets.

  • Jin-Shu Pang‎ et al.
  • Oncology reports‎
  • 2019‎

Papillary renal cell carcinoma (PRCC) accounts for 15‑20% of all kidney neoplasms and continually attracts attention due to the increase in the incidents in which it occurs. The molecular mechanism of PRCC remains unclear and the efficacy of drugs that treat PRCC lacks sufficient evidence in clinical trials. Therefore, it is necessary to investigate the underlying mechanism in the development of PRCC and identify additional potential anti‑PRCC drugs for its treatment. The differently expressed genes (DEGs) of PRCC were identified, followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses for functional annotation. Then, potential drugs for PRCC treatment were predicted by Connectivity Map (Cmap) based on DEGs. Furthermore, the latent function of query drugs in PRCC was explored by integrating drug‑target, drug‑pathway and drug‑protein interactions. In total, 627 genes were screened as DEGs, and these DEGs were annotated using KEGG pathway analyses and were clearly associated with the complement and coagulation cascades, amongst others. Then, 60 candidate drugs, as predicted based on DEGs, were obtained from the Cmap database. Vorinostat was considered as the most promising drug for detailed discussion. Following protein‑protein interaction (PPI) analysis and molecular docking, vorinostat was observed to interact with C3 and ANXN1 proteins, which are the upregulated hub genes and may serve as oncologic therapeutic targets in PRCC. Among the top 20 metabolic pathways, several significant pathways, such as complement and coagulation cascades and cell adhesion molecules, may greatly contribute to the development and progression of PRCC. Following the performance of the PPI network and molecular docking tests, vorinostat exhibited a considerable and promising application in PRCC treatment by targeting C3 and ANXN1.


Identification of potential agents for thymoma by integrated analyses of differentially expressed tumour-associated genes and molecular docking experiments.

  • Xiao-Dong Wang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2019‎

Thymoma, derived from the epithelial cells of the thymus, is a rare malignant tumour type. Following diagnosis with thymoma, patients generally undergo surgical treatment. However, patients with advanced-stage disease are only candidates for chemotherapy and have poor survival. Therefore, it is urgently required to explore effective chemotherapeutic agents for the treatment of thymoma. In the present study, a Bioinformatics analysis was performed to identify novel drugs for thymoma. Differentially expressed genes (DEGs) in thymoma were obtained by Gene Expression Profiling Interactive Analysis. Subsequently, these genes were processed by Connectivity Map analysis to identify suitable compounds. In addition, Metascape software was used to verify drug and target binding. Molecular docking technology was used to verify drug and target binding. Finally, absorption, distribution, metabolism and excretion parameters in the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database were used for drug screening and for evaluation of the potential clinical value. In total, 2,447 DEGs, including 2,204 upregulated and 243 downregulated genes, were identified from 118 thymoma patients and 339 normal samples. The top 10 drugs displaying the most significant negative correlations were fulvestrant, hesperetin, zidovudine, hydrocortisone, rolitetracycline, ellipticine, sirolimus, quinisocaine, oestradiol (estradiol) and harmine. The predicted targets of these drugs were then confirmed. The score for the association between estrogen receptor 1 (ESR1) and fulvestrant was 0.99. According to the molecular docking analysis, the total scores for the interaction between ESR1 were 10.26, and those for the interaction between tamoxifen and ESR1 were 6.60. The oral bioavailability (%), drug-likeness and drug half-life for hesperetin were 70.31, 0.27 and 15.78, respectively; those for oestradiol were 53.56, 0.32 and 3.50, respectively; and those for harmine were 56.80, 0.13 and 5.04, respectively. In conclusion, several potential therapeutic drugs for thymoma were identified in the present study. The results suggested that the compounds, including fulvestrant, estradiol, hesperetin and ellipticine, represent the most likely drugs for the treatment of thymoma. Future studies should focus on testing these novel compounds in vitro and in vivo.


Rapid Screening and Identification of Antitumor Ingredients from the Mangrove Endophytic Fungus Using an Enzyme-Immobilized Magnetic Nanoparticulate System.

  • Nan Wei‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

As a consequence of recent progression in biomedicine and nanotechnology, nanoparticle-based systems have evolved as a new method with extensive applications in responsive therapy, multimodal imaging, drug delivery and natural product separation. Meanwhile, the magnetic nanoparticulate system has aroused great interest for separation and purification because of its excellent magnetic properties. Phospholipase A2 (PLA2) is a highly expressed regulator to promote the growth of various cancers and is an ideal target to treat cancers. In this study, a novel strategy based on ligand-receptor interactions to discover novel PLA2 inhibitors was established, in which PLA2-functionalized Fe3O4@PLGA-PEG-NH2 magnetic nanoparticles were used as a supporting material combined with high-performance liquid chromatography-mass spectrometry, aiming to accelerate the discovery of novel PLA2 inhibitors from natural sources such as mangrove endophytic fungi. Under the optimized ligand fishing conditions, six target compounds were ultimately fished and identified to be cyclic peptides (1-3) and sterols (4-6), which compounds 1, 2 and 4-6 have well-documented cytotoxicities. Compound 3 exerted better inhibitory effect on A549 cells by experiment. In conclusion, PLA2-functionalized Fe3O4@PLGA-PEG-NH2 magnetic nanoparticles-based ligand fishing provided a feasible, selective and effective platform for the efficient screening and identification of antitumor components from natural products.


Down-regulation of microRNA-125b-2-3p is a risk factor for a poor prognosis in hepatocellular carcinoma.

  • He-Qing Huang‎ et al.
  • Bioengineered‎
  • 2021‎

Hepatocellular carcinoma (HCC) is a leading cause of mortality in cancer patients, but the association between miR-125b-2-3p and the onset and prognosis of HCC has not been reported in previous studies; thus, the clinicopathological implications of miR-125b-2-3p in HCC require elaboration. To examine the expression of miR-125b-2-3p in HCC, both in-house RT-qPCR and public datasets were used to calculate the standard mean difference (SMD) and the summary receiver operating characteristic (sROC). MiR-125b-2-3p was markedly lower in HCC than in non-tumor tissue as assessed by the in-house RT-qPCR which was confirmed by the integrative analysis showing the SMD being -0.69 and the area under the curve (AUC) being 0.84 based on 1,233 cases of HCC and 630 cases of non-HCC controls. To gain a overview of the clinical value of miR-125b-2-3p in HCC, all possible datasets were integrated, and lower miR-125b-2-3p levels could lead to poorer differentiation and a more advanced clinical stage of HCC. The hazard ratio (HR) of miR-125b-2-3p was also calculated using a Cox proportional hazards model, and the miR-125b-2-3p level could act as an protective indication for the survival with the HR being 0.74 based on 586 cases of HCC. Furthermore, the effect of nitidine chloride (NC), a natural bioactive phytochemical alkaloid, on the regulation of miR-125b-2-3p and its potential targets was also investigated. The miR-125b-2-3p level was increased after NC treatment, while the expression of its potential target PRKCA was reduced. Above all, a low-expressed level of miR-125b-2-3p plays a tumor suppressive role in HCC.


Identification of ZIC2 as a Potential Biomarker Linked with the Clinical Progression and Immune Infiltration of Oral Cancer: A Multicenter Study.

  • Li Gao‎ et al.
  • International journal of genomics‎
  • 2024‎

To investigate the specific expression profile, clinicopathological significance and mechanism of Zic family member 2 (ZIC2) in oral cancer were unclear. Patients and Methods. We explored the expression pattern and clinicopathological significance of ZIC2 in oral cancer through performing in-house tissue microarray and integrated analysis global RNA-seq and microarrays containing large samples. The molecular basis of ZIC2 in oral cancer was further investigated in the aspects of transcription network and immune correlations. We also performed in vitro experiments and calculated drug sensitivity of oral cancer with different ZIC2 expression levels in response to hundreds of compounds.


Lico A Causes ER Stress and Apoptosis via Up-Regulating miR-144-3p in Human Lung Cancer Cell Line H292.

  • Gang Chen‎ et al.
  • Frontiers in pharmacology‎
  • 2018‎

During our study on the bioactivities of natural flavonoids, we found that the total flavonoids (TFs) and the main constituent of it, licochalcone A (lico A), activated unfolded protein response (UPR) and induced autophagy and thereby apoptosis in H292 cells. MicroRNAs, such as the tumor repressor miR-144-3p, were reported to be differentially expressed in lung cancer cells and were linked to ER stress, autophagy, and apoptosis. However, the underlying miRNA-based mechanism for lico A modulating proliferation, autophagy and apoptosis in lung cancer cells is elusive. In this study, we found that miR-144-3p was down-regulated in H292 cells comparing to normal embryonic lung cells WI-38, and lico A (10 μM) could increase miR-144-3p level in H292 cells. Knockdown of miR-144-3p significantly abrogated the apoptosis and proliferation-inhibiting effects of lico A, and lico A could enhance the proliferation-inhibiting effect and apoptosis induced by miR-144-3p overexpression. Moreover, overexpression miR-144-3p could induce ER stress by down-regulating Nrf2, and lico A enhanced the Nrf2 down-regulation caused by miR-144-3p overexpression. Co-transfection experiments showed that lico A potentially increased the dicing of pre-miR-144 so as to increase the mature miR-144-3p level. Interestingly, high level of lico A (40 μM) up-regulated CHOP protein, but failed to increase the downstream genes levels of CHOP, including Bim and Bcl-2 in H292 cells. Docking studies indicated that CHOP-mediated pathway was potentially blocked by high dose of lico A. Our results suggested that lico A could cause UPR, autophagy and apoptosis, and the underlying mechanism involved up-regulation of miR-144-3p, and increased lico A level would also increase the potential for lico A inhibiting CHOP-dependent apoptosis in H292 cells.


Potential Regulation of UGT2B10 and UGT2B7 by miR-485-5p in Human Liver.

  • Aimee K Sutliff‎ et al.
  • Molecular pharmacology‎
  • 2019‎

The UDP-glucuronosyltransferase (UGT) family of enzymes is important in the metabolic elimination of a variety of endogenous compounds such as bile acids, steroids, and fat-soluble vitamins, as well as exogenous compounds including many pharmaceuticals. The UGT2B subfamily is a major family of UGT enzymes expressed in human liver. The identification of novel mechanisms including post-transcriptional regulation by microRNA (miRNA) contributes to interindividual variability in UGT2B expression and is a crucial component in predicting patient drug response. In the present study, a high-resolution liquid chromatography-tandem mass spectrometry method was employed to measure UGT2B protein levels in a panel of human liver microsomal samples (n = 62). Concurrent in silico analysis identified eight candidate miRNAs as potential regulators of UGT2B enzymes. Comparison of UGT2B protein expression and candidate miRNA levels from human liver samples demonstrated a significant inverse correlation between UGT2B10 and UGT2B15 and one of these candidate miRNAs, miR-485-5p. A near-significant correlation was also observed between UGT2B7 and miR-485-5p expression. In vitro analysis using luciferase-containing vectors suggested an interaction of miR-485-5p within the UGT2B10 3'-untranslated region (UTR), and significant reduction in luciferase activity was also observed for a luciferase vector containing the UGT2B7 3'-UTR; however, none was observed for the UBT2B15 3'-UTR. UGT2B10 and UGT2B7 activities were probed using nicotine and 3'-azido-3'-deoxythymidine, respectively, and significant decreases in glucuronidation activity were observed for both substrates in HuH-7 and Hep3B cells upon overexpression of miR-485-5p mimic. This is the first study demonstrating a regulatory role of miR-485-5p for multiple UGT2B enzymes. SIGNIFICANCE STATEMENT: The purpose of this study was to identify novel epigenetic miRNA regulators of the UGT2B drug-metabolizing enzymes in healthy human liver samples. Our results indicate that miRNA 485-5p is a novel regulator of UGT2B7 and UGT2B10, which play an important role in the metabolism of many commonly prescribed medications, carcinogens, and endogenous compounds. This study identified potential miRNA-UGT2B mRNA interactions using a novel proteomic approach, with in vitro experiments undertaken to validate these interactions.


LPCAT1 overexpression promotes the progression of hepatocellular carcinoma.

  • Rong-Quan He‎ et al.
  • Cancer cell international‎
  • 2021‎

Hepatocellular carcinoma (HCC) remains one of the most common malignant neoplasms. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) plays a key role in the lipid remodelling and is correlated with various neoplasms. Nonetheless, the biological functions and molecular mechanisms of LPCAT1 underlying HCC remain obscure.


Ki-67/MKI67 as a Predictive Biomarker for Clinical Outcome in Gastric Cancer Patients: an Updated Meta-analysis and Systematic Review involving 53 Studies and 7078 Patients.

  • Dan-Dan Xiong‎ et al.
  • Journal of Cancer‎
  • 2019‎

Gastric cancer (GC) threatens human health worldwide and we performed this meta-analysis to evaluate the clinical value of Ki-67/MKI67 in patients with GC. The combined hazard ratio (HR), odds ratio (OR) and 95% confidence interval (95% CI) were calculated to assess the relationships of Ki-67/MKI67 expression with prognoses and clinicopathological characteristics. Genes co-expressed with MKI67 were collected for Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and protein-protein interaction (PPI) network analyses. In total, 53 studies with 7078 patients were included in this study. The pooled HRs indicated that an elevated expression of Ki-67/MKI67 predicted an unfavorable overall survival (HR: 1.54, 95% CI: 1.33-1.78, P<0.0001) and disease-free survival (HR: 2.28, 95% CI: 1.43-3.64, P<0.0001) in GC patients. Additionally, in patients with advanced GC, a high Ki-67/MKI67 expression was also significantly connected with OS (HR: 1.37, 95% CI: 1.18-1.60, P<0.0001). The combined ORs showed that Ki-67/MKI67 expression was related to TNM stage (stage III/IV versus stage I/II: OR=1.93, 95% CI=1.34-2.78, P<0.0001), tumor differentiation (poor versus well/moderate: OR=1.94, 95% CI=1.32-2.85, P=0.001), lymph node metastasis (yes versus no: OR=1.67, 95% CI=1.23-2.25, P=0.001), distant metastasis (yes versus no: OR=1.67, 95% CI=1.24-2.26, P=0.001) and tumor invasion depth (T3/T4 versus Tis/T1/T2: OR=1.98, 95% CI=1.60-2.44, P<0.0001). The results of GO, KEGG pathway and PPI network analyses indicated that Ki-67/MKI67 may be involved in the development of GC via influencing P53 signaling pathway. Ki-67/MKI67 could be a potential indicator to predict the prognosis of patients with GC and identify high-risk cases. Detecting Ki-67/MKI67 expression in clinic may be helpful in optimizing individual treatment and further improving the survival expectancy of patients with GC.


CD226 and TIGIT Cooperate in the Differentiation and Maturation of Human Tfh Cells.

  • Motoko Yasutomi‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Costimulation pathways play an essential role in T cell activation, differentiation, and regulation. CD155 expressed on antigen-presenting cells (APCs) interacts with TIGIT, an inhibitory costimulatory molecule, and CD226, an activating costimulatory molecule, on T cells. TIGIT and CD226 are expressed at varying levels depending on the T cell subset and activation state. T follicular helper cells in germinal centers (GC-Tfh) in human tonsils express high TIGIT and low CD226. However, the biological role of the CD155/TIGIT/CD226 axis in human Tfh cell biology has not been elucidated. To address this, we analyzed tonsillar CD4+ T cell subsets cultured with artificial APCs constitutively expressing CD155. Here we show that CD226 signals promote the early phase of Tfh cell differentiation in humans. CD155 signals promoted the proliferation of naïve CD4+ T cells and Tfh precursors (pre-Tfh) isolated from human tonsils and upregulated multiple Tfh molecules and decreased IL-2, a cytokine detrimental for Tfh cell differentiation. Blocking CD226 potently inhibited their proliferation and expression of Tfh markers. By contrast, while CD155 signals promoted the proliferation of tonsillar GC-Tfh cells, their proliferation required only weak CD226 signals. Furthermore, attenuating CD226 signals rather increased the expression of CXCR5, ICOS, and IL-21 by CD155-stimulated GC-Tfh cells. Thus, the importance of CD226 signals changes according to the differentiation stage of human Tfh cells and wanes in mature GC-Tfh cells. High TIGIT expression on GC-Tfh may play a role in attenuating the detrimental CD226 signals post GC-Tfh cell maturation.


Reprogramming of stromal fibroblasts by SNAI2 contributes to tumor desmoplasia and ovarian cancer progression.

  • Zongyuan Yang‎ et al.
  • Molecular cancer‎
  • 2017‎

Molecular profiling in ovarian cancer (OC) revealed that the desmoplasia subtype presented the poorest prognosis, highlighting the contribution of stromal fibroblasts in tumor progression. This study aimed to investigate the molecular characteristics of SNAI2 driving the transcriptional reprogramming of fibroblasts within tumors.


The anticipating value of PLK1 for diagnosis, progress and prognosis and its prospective mechanism in gastric cancer: a comprehensive investigation based on high-throughput data and immunohistochemical validation.

  • Peng Lin‎ et al.
  • Oncotarget‎
  • 2017‎

Polo-like kinase 1 (PLK1) is a multi-functional protein and its aberrant expression is a driver of cancerous transformation and progression. To increase our understanding of the clinical value and potential molecular mechanism of PLK1 in gastric cancer (GC), we performed this comprehensive investigation. A total of 25 datasets and 12 publications were finally incorporated. Additional immunohistochemistry was conducted to validate the expression pattern of PLK1 in GC. The pooled standard mean deviation (SMD) indicated that PLK1 mRNA was up-regulated in GC (SMD=1.21, 95% CI: 0.65-1.77, P< 0.001). Similarly, the pooled odds ratio (OR) revealed that PLK1 protein was overexpressed in GC compared with normal gastric tissue (OR=12.12, 95% CI: 5.41-27.16, P<0.001). The area under the curve (AUC) of the summary receiver operating characteristic (SROC) curve was 0.86. Furthermore, our results demonstrated that GC patients with PLK1 overexpression were significantly associated with unfavorable overall survival (HR =1.54, 95% CI: 1.30-1.83, P<0.001), lymph node metastasis (OR = 1.78, 95% CI: 1.13-2.80, P=0.013) and advanced TNM stage (OR=1.48, 95% CI: 1.02-2.15, P=0.038). Altogether, 100 similar genes were identified by Gene Expression Profiling Interactive Analysis (GEPIA) and further with gene-set enrichment analysis. These genes were related to gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways relevant to the cell cycle. Gene set enrichment analysis (GSEA) indicated that PLK1 is associated with various cancer-related pathways. Collectively, this study suggests that PLK1 overexpression could play vital roles in the carcinogenesis and deterioration of GC via regulating tumor-related pathways.


Overexpression of FGF2 delays the progression of osteonecrosis of the femoral head activating the PI3K/Akt signaling pathway.

  • Pei Lu‎ et al.
  • Journal of orthopaedic surgery and research‎
  • 2021‎

The purpose of the current study was to explore the role and underlying mechanism of FGF-2 in dexamethasone (DEX)-induced apoptosis in MC3T3-E1 cells.


Bidirectional Mapping of Brain MRI and PET With 3D Reversible GAN for the Diagnosis of Alzheimer's Disease.

  • Wanyun Lin‎ et al.
  • Frontiers in neuroscience‎
  • 2021‎

Combining multi-modality data for brain disease diagnosis such as Alzheimer's disease (AD) commonly leads to improved performance than those using a single modality. However, it is still challenging to train a multi-modality model since it is difficult in clinical practice to obtain complete data that includes all modality data. Generally speaking, it is difficult to obtain both magnetic resonance images (MRI) and positron emission tomography (PET) images of a single patient. PET is expensive and requires the injection of radioactive substances into the patient's body, while MR images are cheaper, safer, and more widely used in practice. Discarding samples without PET data is a common method in previous studies, but the reduction in the number of samples will result in a decrease in model performance. To take advantage of multi-modal complementary information, we first adopt the Reversible Generative Adversarial Network (RevGAN) model to reconstruct the missing data. After that, a 3D convolutional neural network (CNN) classification model with multi-modality input was proposed to perform AD diagnosis. We have evaluated our method on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and compared the performance of the proposed method with those using state-of-the-art methods. The experimental results show that the structural and functional information of brain tissue can be mapped well and that the image synthesized by our method is close to the real image. In addition, the use of synthetic data is beneficial for the diagnosis and prediction of Alzheimer's disease, demonstrating the effectiveness of the proposed framework.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: