Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Fibroblast growth factor-2 binding to the thrombospondin-1 type III repeats, a novel antiangiogenic domain.

  • Barbara Margosio‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2008‎

Thrombospondin-1, an antiangiogenic matricellular protein, binds with high affinity to the angiogenic fibroblast growth factor-2, affecting its bioavailability and activity. The present work aimed at further locating the fibroblast growth factor-2 binding site of thrombospondin-1 and investigating its activity, using recombinant thrombospondin-1 proteins. Only recombinant constructs containing the thrombospondin-1 type III repeats bound fibroblast growth factor-2, whereas other domains, including the known anti-angiogenic type I repeats, were inactive. Binding was specific and inhibited by the anti thrombospondin-1 monoclonal antibody B5.2. Surface plasmon resonance analysis on BIAcore revealed a binding affinity (K(d)) of 310nM for the type III repeats and 11nM for intact thrombospondin-1. Since the type III repeats bind calcium, the effect of calcium on thrombospondin-1 binding to fibroblast growth factor-2 was investigated. Binding was modulated by calcium, as thrombospondin-1 or the type III repeats bound to fibroblast growth factor-2 only in calcium concentrations <0.3mM. The type III repeats inhibited binding of fibroblast growth factor-2 to endothelial cells, fibroblast growth factor-2-induced endothelial cell proliferation in vitro and angiogenesis in the chorioallantoic membrane assay in vivo, thus indicating the antiangiogenic activity of the domain. In conclusion, this study demonstrates that the fibroblast growth factor-2 binding site of thrombospondin-1 is located in the type III repeats. The finding that this domain is active in inhibiting angiogenesis indicates that the type III repeats represent a novel antiangiogenic domain of thrombospondin-1.


A methodological approach to correlate tumor heterogeneity with drug distribution profile in mass spectrometry imaging data.

  • Mridula Prasad‎ et al.
  • GigaScience‎
  • 2020‎

Drug mass spectrometry imaging (MSI) data contain knowledge about drug and several other molecular ions present in a biological sample. However, a proper approach to fully explore the potential of such type of data is still missing. Therefore, a computational pipeline that combines different spatial and non-spatial methods is proposed to link the observed drug distribution profile with tumor heterogeneity in solid tumor. Our data analysis steps include pre-processing of MSI data, cluster analysis, drug local indicators of spatial association (LISA) map, and ions selection.


Tumor vascular remodeling by thrombospondin-1 enhances drug delivery and antineoplastic activity.

  • Denise Pinessi‎ et al.
  • Matrix biology : journal of the International Society for Matrix Biology‎
  • 2021‎

The disorganized and inefficient tumor vasculature is a major obstacle to the delivery and efficacy of antineoplastic treatments. Antiangiogenic agents can normalize the tumor vessels, improving vessel function and boosting the distribution and activity of chemotherapy. The type III repeats (T3R) domain of thrombospondin-1 contains different potential antiangiogenic sequences. We therefore hypothesized that it might affect the tumor vasculature. Ectopic expression of the T3R domain by the tumor cells or by the host, or administration of recombinant T3R, delayed the in vivo growth of experimental tumors. Tumors presented marked reorganization of the vasculature, with abundant but smaller vessels, associated with substantially less necrosis. Mechanistically, the use of truncated forms of the domain, containing different active sequences, pointed to the FGF2/FGFR/ERK axis as a target for T3R activity. Along with reduced necrosis, the expression of T3R promoted tumor distribution of chemotherapy (paclitaxel), with a higher drug concentration and more homogeneous distribution, as assessed by HPLC and MALDI imaging mass spectrometry. T3R-expressing tumors were more responsive to paclitaxel and cisplatin. This study shows that together with its known role as a canonical inhibitor of angiogenesis, thrombospondin-1 can also remodel tumor blood vessels, affecting the morphological and functional properties of the tumor vasculature. The ability of T3R to reduce tumor growth and improve the response to chemotherapy opens new perspectives for therapeutic strategies based on T3R to be used in combination therapies.


The adhesion molecule NCAM promotes ovarian cancer progression via FGFR signalling.

  • Silvia Zecchini‎ et al.
  • EMBO molecular medicine‎
  • 2011‎

Epithelial ovarian carcinoma (EOC) is an aggressive neoplasm, which mainly disseminates to organs of the peritoneal cavity, an event mediated by molecular mechanisms that remain elusive. Here, we investigated the expression and functional role of neural cell adhesion molecule (NCAM), a cell surface glycoprotein involved in brain development and plasticity, in EOC. NCAM is absent from normal ovarian epithelium but becomes highly expressed in a subset of human EOC, in which NCAM expression is associated with high tumour grade, suggesting a causal role in cancer aggressiveness. We demonstrate that NCAM stimulates EOC cell migration and invasion in vitro and promotes metastatic dissemination in mice. This pro-malignant function of NCAM is mediated by its interaction with fibroblast growth factor receptor (FGFR). Indeed, not only FGFR signalling is required for NCAM-induced EOC cell motility, but targeting the NCAM/FGFR interplay with a monoclonal antibody abolishes the metastatic dissemination of EOC in mice. Our results point to NCAM-mediated stimulation of FGFR as a novel mechanism underlying EOC malignancy and indicate that this interplay may represent a valuable therapeutic target.


A complex of α6 integrin and E-cadherin drives liver metastasis of colorectal cancer cells through hepatic angiopoietin-like 6.

  • Serena Marchiò‎ et al.
  • EMBO molecular medicine‎
  • 2012‎

Homing of colorectal cancer (CRC) cells to the liver is a non-random process driven by a crosstalk between tumour cells and components of the host tissue. Here we report the isolation of a liver metastasis-specific peptide ligand (CGIYRLRSC) that binds a complex of E-cadherin and α(6) integrin on the surface of CRC cells. We identify angiopoietin-like 6 protein as a peptide-mimicked natural ligand enriched in hepatic blood vessels of CRC patients. We demonstrate that an interaction between hepatic angiopoietin-like 6 and tumoural α(6) integrin/E-cadherin drives liver homing and colonization by CRC cells, and that CGIYRLRSC inhibits liver metastasis through interference with this ligand/receptor system. Our results indicate a mechanism for metastasis whereby a soluble factor accumulated in normal vessels functions as a specific ligand for circulating cancer cells. Consistently, we show that high amounts of coexpressed α(6) integrin and E-cadherin in primary tumours represent a poor prognostic factor for patients with advanced CRC.


Soluble stroma-related biomarkers of pancreatic cancer.

  • Andrea Resovi‎ et al.
  • EMBO molecular medicine‎
  • 2018‎

The clinical management of pancreatic ductal adenocarcinoma (PDAC) is hampered by the lack of reliable biomarkers. This study investigated the value of soluble stroma-related molecules as PDAC biomarkers. In the first exploratory phase, 12 out of 38 molecules were associated with PDAC in a cohort of 25 PDAC patients and 16 healthy subjects. A second confirmatory phase on an independent cohort of 131 PDAC patients, 30 chronic pancreatitis patients, and 131 healthy subjects confirmed the PDAC association for MMP7, CCN2, IGFBP2, TSP2, sICAM1, TIMP1, and PLG Multivariable logistic regression model identified biomarker panels discriminating respectively PDAC versus healthy subjects (MMP7 + CA19.9, AUC = 0.99, 99% CI = 0.98-1.00) (CCN2 + CA19.9, AUC = 0.96, 99% CI = 0.92-0.99) and PDAC versus chronic pancreatitis (CCN2 + PLG+FN+Col4 + CA19.9, AUC = 0.94, 99% CI = 0.88-0.99). Five molecules were associated with PanIN development in two GEM models of PDAC (PdxCre/LSL-KrasG12D and PdxCre/LSL-KrasG12D/+/LSL-Trp53R172H/+), suggesting their potential for detecting early disease. These markers were also elevated in patient-derived orthotopic PDAC xenografts and associated with response to chemotherapy. The identified stroma-related soluble biomarkers represent potential tools for PDAC diagnosis and for monitoring treatment response of PDAC patients.


The PARP1 Inhibitor AZD5305 Impairs Ovarian Adenocarcinoma Progression and Visceral Metastases in Patient-derived Xenografts Alone and in Combination with Carboplatin.

  • Giulia Dellavedova‎ et al.
  • Cancer research communications‎
  • 2023‎

PARP inhibitors (PARPi) have changed the management of patients with ovarian cancer and their effectiveness has been demonstrated especially in homologous recombination repair-deficient tumors. These first-generation drugs target PARP1, but also PARP2 and other family members potentially responsible for adverse effects that limit their therapeutic potential and restrict their use in combination with chemotherapeutic agents. We investigated ovarian cancer patient-derived xenografts (OC-PDXs) to assess whether malignant progression could be impaired by a novel inhibitor selective for PARP1 (AZD5305) and to assess the potential of its combination with carboplatin (CPT), the standard-of-care for patients with ovarian cancer. In BRCA-mutated OC-PDXs, AZD5305 achieved greater tumor regressions and longer duration of response as well as a superior impairment of visceral metastasis and improved survival benefit compared with the first-generation dual PARP1/2 inhibitors. The combination of AZD5305 plus CPT was more efficacious than single agents. Subcutaneously growing tumors experienced regression that persisted after therapy stopped. Combination efficacy was greater against tumors that did not respond well to platinum, even at a dose at which AZD5305 monotherapy was ineffective. The combination therapy impaired metastatic dissemination and significantly prolonged the lifespan of mice bearing OC-PDXs in their abdomen. This combination benefit was evident even when CPT was used at suboptimal doses, and was superior to full-dose platinum treatment. These preclinical studies demonstrate that the PARP1-selective inhibitor AZD5305 retains and improves the therapeutic benefit of the first-generation PARPi, providing an opportunity to maximize benefits for this class of anticancer agents.


L1CAM promotes ovarian cancer stemness and tumor initiation via FGFR1/SRC/STAT3 signaling.

  • Marco Giordano‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2021‎

Cancer stem cells (CSC) have been implicated in tumor progression. In ovarian carcinoma (OC), CSC drive tumor formation, dissemination and recurrence, as well as drug resistance, thus contributing to the high death-to-incidence ratio of this disease. However, the molecular basis of such a pathogenic role of ovarian CSC (OCSC) has been elucidated only to a limited extent. In this context, the functional contribution of the L1 cell adhesion molecule (L1CAM) to OC stemness remains elusive.


Platinum sensitivity and DNA repair in a recently established panel of patient-derived ovarian carcinoma xenografts.

  • Federica Guffanti‎ et al.
  • Oncotarget‎
  • 2018‎

A xenobank of patient-derived (PDX) ovarian tumor samples has been established consisting of tumors with different sensitivity to cisplatin (DDP), from very responsive to resistant. As the DNA repair pathway is an important driver in tumor response to DDP, we analyzed the mRNA expression of 20 genes involved in the nucleotide excision repair, fanconi anemia, homologous recombination, base excision repair, mismatch repair and translesion repair pathways and the methylation patterns of some of these genes. We also investigated the correlation with the response to platinum-based therapy. The mRNA levels of the selected genes were evaluated by Real Time-PCR (RT-PCR) with ad hoc validated primers and gene promoter methylation by pyrosequencing. All the DNA repair genes were variably expressed in all 42 PDX samples analyzed, with no particular histotype-specific pattern of expression. In high-grade serous/endometrioid PDXs, the CDK12 mRNA expression levels positively correlated with the expression of TP53BP1, PALB2, XPF and POLB. High-grade serous/endometrioid PDXs with TP53 mutations had significantly higher levels of POLQ, FANCD2, RAD51 and POLB than high-grade TP53 wild type PDXs. The mRNA levels of CDK12, PALB2 and XPF inversely associated with the in vivo DDP antitumor activity; higher CDK12 mRNA levels were associated with a higher recurrence rate in ovarian patients with low residual tumor. These data support the important role of CDK12 in the response to a platinum based therapy in ovarian patients.


PGC1α/β Expression Predicts Therapeutic Response to Oxidative Phosphorylation Inhibition in Ovarian Cancer.

  • Carmen Ghilardi‎ et al.
  • Cancer research‎
  • 2022‎

Ovarian cancer is the deadliest gynecologic cancer, and novel therapeutic options are crucial to improve overall survival. Here we provide evidence that impairment of oxidative phosphorylation (OXPHOS) can help control ovarian cancer progression, and this benefit correlates with expression of the two mitochondrial master regulators PGC1α and PGC1β. In orthotopic patient-derived ovarian cancer xenografts (OC-PDX), concomitant high expression of PGC1α and PGC1β (PGC1α/β) fostered a unique transcriptional signature, leading to increased mitochondrial abundance, enhanced tricarboxylic acid cycling, and elevated cellular respiration that ultimately conferred vulnerability to OXPHOS inhibition. Treatment with the respiratory chain complex I inhibitor IACS-010759 caused mitochondrial swelling and ATP depletion that consequently delayed malignant progression and prolonged the lifespan of high PGC1α/β-expressing OC-PDX-bearing mice. Conversely, low PGC1α/β OC-PDXs were not affected by IACS-010759, thus pinpointing a selective antitumor effect of OXPHOS inhibition. The clinical relevance of these findings was substantiated by analysis of ovarian cancer patient datasets, which showed that 25% of all cases displayed high PGC1α/β expression along with an activated mitochondrial gene program. This study endorses the use of OXPHOS inhibitors to manage ovarian cancer and identifies the high expression of both PGC1α and β as biomarkers to refine the selection of patients likely to benefit most from this therapy.


Integrated molecular profiling of patient-derived ovarian cancer models identifies clinically relevant signatures and tumor vulnerabilities.

  • Michela Lupia‎ et al.
  • International journal of cancer‎
  • 2022‎

High-grade serous ovarian carcinoma (HGSOC) is a highly aggressive and intractable neoplasm, mainly because of its rapid dissemination into the abdominal cavity, a process that is favored by tumor-associated peritoneal ascites. The precise molecular alterations involved in HGSOC onset and progression remain largely unknown due to the high biological and genetic heterogeneity of this tumor. We established a set of different tumor samples (termed the As11-set) derived from a single HGSOC patient, consisting of peritoneal ascites, primary tumor cells, ovarian cancer stem cells (OCSC) and serially propagated tumor xenografts. The As11-set was subjected to an integrated RNA-seq and DNA-seq analysis which unveiled molecular alterations that marked the different types of samples. Our profiling strategy yielded a panel of signatures relevant in HGSOC and in OCSC biology. When such signatures were used to interrogate the TCGA dataset from HGSOC patients, they exhibited prognostic and predictive power. The molecular alterations also identified potential vulnerabilities associated with OCSC, which were then tested functionally in stemness-related assays. As a proof of concept, we defined PI3K signaling as a novel druggable target in OCSC.


The ER stress response mediator ERO1 triggers cancer metastasis by favoring the angiogenic switch in hypoxic conditions.

  • Ersilia Varone‎ et al.
  • Oncogene‎
  • 2021‎

Solid tumors are often characterized by a hypoxic microenvironment which contributes, through the hypoxia-inducible factor HIF-1, to the invasion-metastasis cascade. Endoplasmic reticulum (ER) stress also leads tumor cells to thrive and spread by inducing a transcriptional and translational program, the Unfolded Protein Response (UPR), aimed at restoring ER homeostasis. We studied ERO1 alpha (henceforth ERO1), a protein disulfide oxidase with the tumor-relevant characteristic of being positively regulated by both ER stress and hypoxia. Analysis of the redox secretome indicated that pro-angiogenic HIF-1 targets, were blunted in ERO1-devoid breast cancer cells under hypoxic conditions. ERO1 deficiency reduced tumor cell migration and lung metastases by impinging on tumor angiogenesis, negatively regulating the upstream ATF4/CHOP branch of the UPR and selectively impeding oxidative folding of angiogenic factors, among which VEGF-A. Thus, ERO1 deficiency acted synergistically with the otherwise feeble curative effects of anti-angiogenic therapy in aggressive breast cancer murine models and it might be exploited to treat cancers with pathological HIF-1-dependent angiogenesis. Furthermore, ERO1 levels are higher in the more aggressive basal breast tumors and correlate inversely with the disease- and metastasis-free interval of breast cancer patients. Thus, taking advantage of our in vitro data on ERO1-regulated gene products we identified a gene set associated with ERO1 expression in basal tumors and related to UPR, hypoxia, and angiogenesis, whose levels might be investigated in patients as a hallmark of tumor aggressiveness and orient those with lower levels toward an effective anti-angiogenic therapy.


Trypsinogen 4 boosts tumor endothelial cells migration through proteolysis of tissue factor pathway inhibitor-2.

  • Carmen Ghilardi‎ et al.
  • Oncotarget‎
  • 2015‎

Proteases contribute to cancer in many ways, including tumor vascularization and metastasis, and their pharmacological inhibition is a potential anticancer strategy. We report that human endothelial cells (EC) express the trypsinogen 4 isoform of the serine protease 3 (PRSS3), and lack both PRSS2 and PRSS1. Trypsinogen 4 expression was upregulated by the combined action of VEGF-A, FGF-2 and EGF, angiogenic factors representative of the tumor microenvironment. Suppression of trypsinogen 4 expression by siRNA inhibited the angiogenic milieu-induced migration of EC from cancer specimens (tumor-EC), but did not affect EC from normal tissues. We identified tissue factor pathway inhibitor-2 (TFPI-2), a matrix associated inhibitor of cell motility, as the functional target of trypsinogen 4, which cleaved TFPI-2 and removed it from the matrix put down by tumor-EC. Silencing tumor-EC for trypsinogen 4 accumulated TFPI2 in the matrix. Showing that angiogenic factors stimulate trypsinogen 4 expression, which hydrolyses TFPI-2 favoring a pro-migratory situation, our study suggests a new pathway linking tumor microenvironment signals to endothelial cell migration, which is essential for angiogenesis and blood vessel remodeling. Abolishing trypsinogen 4 functions might be an exploitable strategy as anticancer, particularly anti-vascular, therapy.


Heterogeneity of paclitaxel distribution in different tumor models assessed by MALDI mass spectrometry imaging.

  • Silvia Giordano‎ et al.
  • Scientific reports‎
  • 2016‎

The penetration of anticancer drugs in solid tumors is important to ensure the therapeutic effect, so methods are needed to understand drug distribution in different parts of the tumor. Mass spectrometry imaging (MSI) has great potential in this field to visualize drug distribution in organs and tumor tissues with good spatial resolution and superior specificity. We present an accurate and reproducible imaging method to investigate the variation of drug distribution in different parts of solid tumors. The method was applied to study the distribution of paclitaxel in three ovarian cancer models with different histopathological characteristics and in colon cancer (HCT116), breast cancer (MDA-MB-231) and malignant pleural mesothelioma (MPM487). The heterogeneous drug penetration in the tumors is evident from the MALDI imaging results and from the images analysis. The differences between the various models do not always relate to significant changes in drug content in tumor homogenate examined by classical HPLC analysis. The specificity of the method clarifies the heterogeneity of the drug distribution that is analyzed from a quantitative point of view too, highlighting how marked are the variations of paclitaxel amounts in different part of solid tumors.


Targeting angiogenesis with compounds from the extracellular matrix.

  • Dorina Belotti‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2011‎

The extracellular matrix (ECM) is the central element of a pericellular network of bioactive molecules. It orchestrates molecular interactions, availability and activity, acting as a key regulator of cell functions and complex biological processes, including physiological and pathological angiogenesis. The ECM serves as a source of both stimulatory and inhibitory angiogenesis regulatory factors. The observation that several endogenous inhibitors of angiogenesis derive from the ECM proves its importance in physiological angiogenesis, and point to the ECM as a precious source of therapeutic agents for angiogenesis-driven diseases, including cancer growth and metastatic dissemination. This review focuses on the different approaches to exploit ECM molecules for designing tools for therapeutic inhibition or monitoring of pathological angiogenesis, with particular focus on antineoplastic therapy, and emphasis on peptides of ECM moieties and mimetic small molecules.


Determination of paclitaxel distribution in solid tumors by nano-particle assisted laser desorption ionization mass spectrometry imaging.

  • Lavinia Morosi‎ et al.
  • PloS one‎
  • 2013‎

A sensitive, simple and reproducible protocol for nanoparticle-assisted laser desorption/ionization mass spectrometry imaging technique is described. The use of commercially available TiO2 nanoparticles abolishes heterogeneous crystallization, matrix background interferences and enhances signal detection, especially in the low mass range. Molecular image normalization was based on internal standard deposition on tissues, allowing direct comparison of drug penetration and distribution between different organs and tissues. The method was applied to analyze the distribution of the anticancer drug paclitaxel, inside normal and neoplastic mouse tissue sections. Spatial resolution was good, with a linear response between different in vivo treatments and molecular imaging intensity using therapeutic drug doses. This technique distinguishes the different intensity of paclitaxel distribution in control organs of mice, such as liver and kidney, in relation to the dose. Animals treated with 30 mg/kg of paclitaxel had half of the concentration of those treated with 60 mg/kg. We investigated the spatial distribution of paclitaxel in human melanoma mouse xenografts, following different dosage schedules and found a more homogeneous drug distribution in tumors of mice given repeated doses (5×8 mg/kg) plus a 60 mg/kg dose than in those assigned only a single 60 mg/kg dose. The protocol can be readily applied to investigate anticancer drug distribution in neoplastic lesions and to develop strategies to optimize and enhance drug penetration through different tumor tissues.


A novel L1CAM isoform with angiogenic activity generated by NOVA2-mediated alternative splicing.

  • Francesca Angiolini‎ et al.
  • eLife‎
  • 2019‎

The biological players involved in angiogenesis are only partially defined. Here, we report that endothelial cells (ECs) express a novel isoform of the cell-surface adhesion molecule L1CAM, termed L1-ΔTM. The splicing factor NOVA2, which binds directly to L1CAM pre-mRNA, is necessary and sufficient for the skipping of L1CAM transmembrane domain in ECs, leading to the release of soluble L1-ΔTM. The latter exerts high angiogenic function through both autocrine and paracrine activities. Mechanistically, L1-ΔTM-induced angiogenesis requires fibroblast growth factor receptor-1 signaling, implying a crosstalk between the two molecules. NOVA2 and L1-ΔTM are overexpressed in the vasculature of ovarian cancer, where L1-ΔTM levels correlate with tumor vascularization, supporting the involvement of NOVA2-mediated L1-ΔTM production in tumor angiogenesis. Finally, high NOVA2 expression is associated with poor outcome in ovarian cancer patients. Our results point to L1-ΔTM as a novel, EC-derived angiogenic factor which may represent a target for innovative antiangiogenic therapies.


Regulator of G-protein signaling 5 (RGS5) protein: a novel marker of cancer vasculature elicited and sustained by the tumor's proangiogenic microenvironment.

  • Antonietta Silini‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2012‎

We previously identified regulator of G-protein signaling 5 (RGS5) among several genes expressed by tumor-derived endothelial cells (EC). In this study, we provide the first in vivo/ex vivo evidence of RGS5 protein in the vasculature of ovarian carcinoma clinical specimens and its absence in human ovaries. Consistent with this, we show higher amounts of Rgs5 transcript in EC isolated from human cancers (as opposed to normal tissues) and demonstrate that expression is sustained by a milieu of factors typical of the proangiogenic tumor environment, including vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2). Supporting these findings, we show elevated levels of Rgs5 mRNA in the stroma from strongly (as opposed to weakly) angiogenic ovarian carcinoma xenografts and accordingly, we also show more of the protein associated to the abnormal vasculature. RGS5 protein predominantly colocalizes with the endothelium expressing platelet/endothelial cell adhesion molecule-1 (PECAM-1/CD31) and to a much lesser extent with perivascular/mural cells expressing platelet-derived growth factor receptor-beta (PDGFR-β) or alpha smooth muscle actin (αSMA). To toughen the relevance of the findings, we demonstrate RGS5 in the blood vessels of other cancer models endowed with a proangiogenic environment, such as human melanoma and renal carcinoma xenografts; to the contrary, it was undetectable in the vasculature of normal mouse tissues. RGS5 expression by the cancer vasculature triggered and retained by the proangiogenic microenvironment supports its exploitation as a novel biomarker and opens the path to explore new possibilities of therapeutic intervention aimed at targeting tumor blood vessels.


Identification of novel vascular markers through gene expression profiling of tumor-derived endothelium.

  • Carmen Ghilardi‎ et al.
  • BMC genomics‎
  • 2008‎

Targeting tumor angiogenesis and vasculature is a promising strategy for the inhibition of tumor growth and dissemination. Evidence suggests that tumor vasculature expresses unique markers that distinguish it from normal vasculature. Our efforts focused on the molecular characterization of endothelial cells (EC) in the search for selective markers of tumor vasculature that might be helpful for the development of effective therapeutic approaches.


Trabectedin and Lurbinectedin Extend Survival of Mice Bearing C26 Colon Adenocarcinoma, without Affecting Tumor Growth or Cachexia.

  • Giorgio Aquila‎ et al.
  • Cancers‎
  • 2020‎

Trabectedin (ET743) and lurbinectedin (PM01183) limit the production of inflammatory cytokines that are elevated during cancer cachexia. Mice carrying C26 colon adenocarcinoma display cachexia (i.e., premature death and body wasting with muscle, fat and cardiac tissue depletion), high levels of inflammatory cytokines and subsequent splenomegaly. We tested whether such drugs protected these mice from cachexia. Ten-week-old mice were inoculated with C26 cells and three days later randomized to receive intravenously vehicle or 0.05 mg/kg ET743 or 0.07 mg/kg PM01183, three times a week for three weeks. ET743 or PM01183 extended the lifespan of C26-mice by 30% or 85%, respectively, without affecting tumor growth or food intake. Within 13 days from C26 implant, both drugs did not protect fat, muscle and heart from cachexia. Since PM01183 extended the animal survival more than ET743, we analyzed PM01183 further. In tibialis anterior of C26-mice, but not in atrophying myotubes, PM01183 restrained the NF-κB/PAX7/myogenin axis, possibly reducing the pro-inflammatory milieu, and failed to limit the C/EBPβ/atrogin-1 axis. Inflammation-mediated splenomegaly of C26-mice was inhibited by PM01183 for as long as the treatment lasted, without reducing IL-6, M-CSF or IL-1β in plasma. ET743 and PM01183 extend the survival of C26-bearing mice unchanging tumor growth or cachexia but possibly restrain muscle-related inflammation and C26-induced splenomegaly.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: