Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 125 papers

COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability.

  • Jae-Woong Yu‎ et al.
  • Molecular cell‎
  • 2008‎

Seasonal changes in day length are perceived by plant photoreceptors and transmitted to the circadian clock to modulate developmental responses such as flowering time. Blue-light-sensing cryptochromes, the E3 ubiquitin-ligase COP1, and clock-associated proteins ELF3 and GI regulate this process, although the regulatory link between them is unclear. Here we present data showing that COP1 acts with ELF3 to mediate day length signaling from CRY2 to GI within the photoperiod flowering pathway. We found that COP1 and ELF3 interact in vivo and show that ELF3 allows COP1 to interact with GI in vivo, leading to GI degradation in planta. Accordingly, mutation of COP1 or ELF3 disturbs the pattern of GI cyclic accumulation. We propose a model in which ELF3 acts as a substrate adaptor, enabling COP1 to modulate light input signal to the circadian clock through targeted destabilization of GI.


Mitochondrial control by DRP1 in brain tumor initiating cells.

  • Qi Xie‎ et al.
  • Nature neuroscience‎
  • 2015‎

Brain tumor initiating cells (BTICs) co-opt the neuronal high affinity glucose transporter, GLUT3, to withstand metabolic stress. We investigated another mechanism critical to brain metabolism, mitochondrial morphology, in BTICs. BTIC mitochondria were fragmented relative to non-BTIC tumor cell mitochondria, suggesting that BTICs increase mitochondrial fission. The essential mediator of mitochondrial fission, dynamin-related protein 1 (DRP1), showed activating phosphorylation in BTICs and inhibitory phosphorylation in non-BTIC tumor cells. Targeting DRP1 using RNA interference or pharmacologic inhibition induced BTIC apoptosis and inhibited tumor growth. Downstream, DRP1 activity regulated the essential metabolic stress sensor, AMP-activated protein kinase (AMPK), and targeting AMPK rescued the effects of DRP1 disruption. Cyclin-dependent kinase 5 (CDK5) phosphorylated DRP1 to increase its activity in BTICs, whereas Ca(2+)-calmodulin-dependent protein kinase 2 (CAMK2) inhibited DRP1 in non-BTIC tumor cells, suggesting that tumor cell differentiation induces a regulatory switch in mitochondrial morphology. DRP1 activation correlated with poor prognosis in glioblastoma, suggesting that mitochondrial dynamics may represent a therapeutic target for BTICs.


An E3 Ubiquitin Ligase-BAG Protein Module Controls Plant Innate Immunity and Broad-Spectrum Disease Resistance.

  • Quanyuan You‎ et al.
  • Cell host & microbe‎
  • 2016‎

Programmed cell death (PCD) and immunity in plants are tightly controlled to promote antimicrobial defense while preventing autoimmunity. However, the mechanisms contributing to this immune homeostasis are poorly understood. Here, we isolated a rice mutant ebr1 (enhanced blight and blast resistance 1) that shows enhanced broad-spectrum bacterial and fungal disease resistance, but displays spontaneous PCD, autoimmunity, and stunted growth. EBR1 encodes an E3 ubiquitin ligase that interacts with OsBAG4, which belongs to the BAG (Bcl-2-associated athanogene) family that functions in cell death, growth arrest, and immune responses in mammals. EBR1 directly targets OsBAG4 for ubiquitination-mediated degradation. Elevated levels of OsBAG4 in rice are necessary and sufficient to trigger PCD and enhanced disease resistance to pathogenic infection, most likely by activating pathogen-associated molecular patterns-triggered immunity (PTI). Together, our study suggests that an E3-BAG module orchestrates innate immune homeostasis and coordinates the trade-off between defense and growth in plants.


Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination.

  • Xiaoguang Fang‎ et al.
  • The Journal of experimental medicine‎
  • 2017‎

Glioblastoma is the most lethal brain tumor and harbors glioma stem cells (GSCs) with potent tumorigenic capacity. The function of GSCs in tumor propagation is maintained by several core transcriptional regulators including c-Myc. c-Myc protein is tightly regulated by posttranslational modification. However, the posttranslational regulatory mechanisms for c-Myc in GSCs have not been defined. In this study, we demonstrate that the deubiquitinase USP13 stabilizes c-Myc by antagonizing FBXL14-mediated ubiquitination to maintain GSC self-renewal and tumorigenic potential. USP13 was preferentially expressed in GSCs, and its depletion potently inhibited GSC proliferation and tumor growth by promoting c-Myc ubiquitination and degradation. In contrast, overexpression of the ubiquitin E3 ligase FBXL14 induced c-Myc degradation, promoted GSC differentiation, and inhibited tumor growth. Ectopic expression of the ubiquitin-insensitive mutant T58A-c-Myc rescued the effects caused by FBXL14 overexpression or USP13 disruption. These data suggest that USP13 and FBXL14 play opposing roles in the regulation of GSCs through reversible ubiquitination of c-Myc.


Failure of Elevating Calcium Induces Oxidative Stress Tolerance and Imparts Cisplatin Resistance in Ovarian Cancer Cells.

  • Liwei Ma‎ et al.
  • Aging and disease‎
  • 2016‎

Cisplatin is a commonly used chemotherapeutic drug, used for the treatment of malignant ovarian cancer, but acquired resistance limits its application. There is therefore an overwhelming need to understand the mechanism of cisplatin resistance in ovarian cancer, that is, ovarian cancer cells are insensitive to cisplatin treatment. Here, we show that failure of elevating calcium and oxidative stress tolerance play key roles in cisplatin resistance in ovarian cancer cell lines. Cisplatin induces an increase in oxidative stress and alters intracellular Ca(2+) concentration, including cytosolic and mitochondrial Ca(2+) in cisplatin-sensitive SKOV3 cells, but not in cisplatin-resistant SKOV3/DDP cells. Cisplatin induces mitochondrial damage and triggers the mitochondrial apoptotic pathway in cisplatin-sensitive SKOV3 cells, but rarely in cisplatin-resistant SKOV3/DDP cells. Inhibition of calcium signaling attenuates cisplatin-induced oxidative stress and intracellular Ca(2+) overload in cisplatin-sensitive SKOV3 cells. Moreover, in vivo xenograft models of nude mouse, cisplatin significantly reduced the growth rates of tumors originating from SKOV3 cells, but not that of SKOV3/DDP cells. Collectively, our data indicate that failure of calcium up-regulation mediates cisplatin resistance by alleviating oxidative stress in ovarian cancer cells. Our results highlight potential therapeutic strategies to improve cisplatin resistance.


Dihydroartemisinin induces endothelial cell anoikis through the activation of the JNK signaling pathway.

  • Jiao Zhang‎ et al.
  • Oncology letters‎
  • 2016‎

Angiogenesis is required for the growth and metastasis of solid tumors. The anti-malarial agent dihydroartemisinin (DHA) demonstrates potent anti-angiogenic activity, but the underlying molecular mechanisms are not yet fully understood. During the process of angiogenesis, endothelial cells migrating from existing capillaries may undergo programmed cell death after detaching from the extracellular matrix, a process that is defined as anchorage-dependent apoptosis or anoikis. In the present study, DHA-induced cell death was compared in human umbilical vein endothelial cells (HUVECs) cultured in suspension and attached to culture plates. In suspended HUVECs, the cell viability was decreased and apoptosis was increased with the treatment of 50 µM DHA for 5 h, while the same treatment did not affect the attached HUVECs. In addition, 50 µM DHA increased the phosphorylation of c-Jun N-terminal kinase (JNK) in suspended HUVECs, but not in attached HUVECs, for up to 5 h of treatment. The JNK inhibitor, SP600125, reversed DHA-induced cell death in suspended HUVECs, suggesting that the JNK pathway may mediate DHA-induced endothelial cell anoikis. The data from the present study indicates a novel mechanism for understanding the anti-angiogenic effects of DHA, which may be used as a component for chemotherapy.


Autophagy inhibitor chloroquine increases sensitivity to cisplatin in QBC939 cholangiocarcinoma cells by mitochondrial ROS.

  • Xianzhi Qu‎ et al.
  • PloS one‎
  • 2017‎

The tumor cells have some metabolic characteristics of the original tissues, and the metabolism of the tumor cells is closely related to autophagy. However, the mechanism of autophagy and metabolism in chemotherapeutic drug resistance is still poorly understood. In this study, we investigated the role and mechanism of autophagy and glucose metabolism in chemotherapeutic drug resistance by using cholangiocarcinoma QBC939 cells with primary cisplatin resistance and hepatocellular carcinoma HepG2 cells. We found that QBC939 cells with cisplatin resistance had a higher capacity for glucose uptake, consumption, and lactic acid generation, and higher activity of the pentose phosphate pathway compared with HepG2 cells, and the activity of PPP was further increased after cisplatin treatment in QBC939 cells. It is suggested that there are some differences in the metabolism of glucose in hepatocellular carcinoma and cholangiocarcinoma cells, and the activation of PPP pathway may be related to the drug resistance. Through the detection of autophagy substrates p62 and LC3, found that QBC939 cells have a higher flow of autophagy, autophagy inhibitor chloroquine can significantly increase the sensitivity of cisplatin in cholangiocarcinoma cells compared with hepatocellular carcinoma HepG2 cells. The mechanism may be related to the inhibition of QBC939 cells with higher activity of the PPP, the key enzyme G6PDH, which reduces the antioxidant capacity of cells and increases intracellular ROS, especially mitochondrial ROS. Therefore, we hypothesized that autophagy and the oxidative stress resistance mediated by glucose metabolism may be one of the causes of cisplatin resistance in cholangiocarcinoma cells. It is suggested that according to the metabolism characteristics of tumor cells, inhibition of autophagy lysosome pathway with chloroquine may be a new route for therapeutic agents against cholangiocarcinoma.


Degradation of SERRATE via ubiquitin-independent 20S proteasome to survey RNA metabolism.

  • Yanjun Li‎ et al.
  • Nature plants‎
  • 2020‎

SERRATE (SE) is a key factor in RNA metabolism. Here, we report that SE binds 20S core proteasome α subunit G1 (PAG1) among other components and is accumulated in their mutants. Purified PAG1-containing 20S proteasome degrades recombinant SE via an ATP- and ubiquitin-independent manner in vitro. Nevertheless, PAG1 is a positive regulator for SE in vivo, as pag1 shows comparable molecular and/or developmental defects relative to se. Furthermore, SE is poorly assembled into macromolecular complexes, exemplified by the microprocessor in pag1 compared with Col-0. SE overexpression triggered the destruction of both transgenic and endogenous protein, leading to similar phenotypes of se and SE overexpression lines. We therefore propose that PAG1 degrades the intrinsically disordered portion of SE to secure the functionality of folded SE that is assembled and protected in macromolecular complexes. This study provides insight into how the 20S proteasome regulates RNA metabolism through controlling its key factor in eukaryotes.


ESCRT-I Component VPS23A Is Targeted by E3 Ubiquitin Ligase XBAT35 for Proteasome-Mediated Degradation in Modulating ABA Signaling.

  • Feifei Yu‎ et al.
  • Molecular plant‎
  • 2020‎

A myriad of abiotic stress responses in plants are controlled by abscisic acid (ABA) signaling. ABA receptors can be degraded by both the 26S proteasome pathway and vacuolar degradation pathway after processing via the endosomal sorting complex required for transport (ESCRT) proteins. Despite being essential for ABA signaling, the upstream regulators of ESCRTs remain unknown. Here, we report that the ESCRT-I component VPS23A is an unstable protein that is degraded via the ubiquitin-proteasome system (UPS). The UEV domain of VPS23A physically interacts with the two PSAP motifs of XBAT35, an E3 ubiquitin ligase, and this interaction results in the deposition of K48 polyubiquitin chains on VPS23A, marking it for degradation by 26S proteasomes. We showed that XBAT35 in plants is a positive regulator of ABA responses that acts via the VPS23A/PYL4 complex, specifically by accelerating VPS23A turnover and thereby increasing accumulation of the ABA receptor PYL4. This work deciphers how an ESCRT component is regulated in plants and deepens our understanding of plant stress responses by illustrating a mechanism whereby crosstalk between the UPS and endosome-vacuole-mediated degradation pathways controls ABA signaling.


Multi-omics analyses reveal metabolic alterations regulated by hepatitis B virus core protein in hepatocellular carcinoma cells.

  • Qi Xie‎ et al.
  • Scientific reports‎
  • 2017‎

Chronic hepatitis B virus (HBV) infection is partly responsible for hepatitis, fatty liver disease and hepatocellular carcinoma (HCC). HBV core protein (HBc), encoded by the HBV genome, may play a significant role in HBV life cycle. However, the function of HBc in the occurrence and development of liver disease is still unclear. To investigate the underlying mechanisms, HBc-transfected HCC cells were characterized by multi-omics analyses. Combining proteomics and metabolomics analyses, our results showed that HBc promoted the expression of metabolic enzymes and the secretion of metabolites in HCC cells. In addition, glycolysis and amino acid metabolism were significantly up-regulated by HBc. Moreover, Max-like protein X (MLX) might be recruited and enriched by HBc in the nucleus to regulate glycolysis pathways. This study provides further insights into the function of HBc in the molecular pathogenesis of HBV-induced diseases and indicates that metabolic reprogramming appears to be a hallmark of HBc transfection.


The Infratentorial Localization of Brain Metastases May Correlate with Specific Clinical Characteristics and Portend Worse Outcomes Based on Voxel-Wise Mapping.

  • Zhangqi Dou‎ et al.
  • Cancers‎
  • 2021‎

The infratentorial regions are vulnerable to develop brain metastases (BMs). However, the associations between the infratentorial localization of BMs and clinical characteristics remained unclear. We retrospectively studied 1102 patients with 4365 BM lesions. Voxel-wise mapping of MRI was applied to construct the tumor frequency heatmaps after normalization and segmentation. The analysis of differential involvement (ADIFFI) was further used to obtain statistically significant clusters. Kaplan-Meier method and Cox regression were used to analyze the prognosis. The parietal, insular and left occipital lobes, and cerebellum were vulnerable to BMs with high relative metastatic risks. Infratentorial areas were site-specifically affected by the lung, breast, and colorectal cancer BMs, but inversely avoided by melanoma BMs. Significant infratentorial clusters were associated with young age, male sex, lung neuroendocrine and squamous cell carcinomas, high expression of Ki-67 of primaries and BMs, and patients with poorer prognosis. Inferior OS was observed in patients with ≥3 BMs and those who received whole-brain radiotherapy alone. Infratentorial involvement of BMs was an independent risk factor of poor prognosis for patients who received surgery (p = 0.023, hazard ratio = 1.473, 95% confidence interval = 1.055-2.058). The current study may add valuable clinical recognition of BMs and provide references for BMs diagnosis, treatment evaluation, and prognostic prediction.


Age-related CCL12 Aggravates Intracerebral Hemorrhage-induced Brain Injury via Recruitment of Macrophages and T Lymphocytes.

  • Jiacheng Huang‎ et al.
  • Aging and disease‎
  • 2020‎

Circulating factors associated with aging have been shown to be involved in the development of age-related chronic and acute brain diseases. Here, we aimed to investigate the roles and mechanisms of CCL12, a circulating factor that is highly expressed in the plasma of aged rodents after intracerebral hemorrhage (ICH) using parabiosis and ICH models. Neurological deficit score (NDS), mortality rate, brain water content (BWC), and levels of inflammatory factors were determined to assess the degree of ICH-induced brain injury. Peripheral inflammatory cell infiltration was examined using immunofluorescence and flow cytometry. After confirming that acute brain injury after ICH was aggravated with age, we found that brain and plasma CCL12 levels were markedly higher in old mice than in young mice after ICH, and that plasma CCL12 was able to enter the brain. Using CCL12-/- mice, we showed that the degree of damage in the brain-as determined by NDS, mortality rate, BWC, levels of inflammatory factors, and numbers of degenerative and apoptotic neural cells and surviving neurons was significantly attenuated compared to that observed in old wild-type (WT) mice. These effects were reversed in CCL12-treated old mice. The detrimental effects caused by CCL12 may involve its ability to recruit macrophages and T cells. Finally, the administration of an anti-CCL12 antibody markedly improved the outcomes of ICH mice. Our results are the first to indicate that elevated peripheral CCL12 levels in old mice aggravates ICH-induced brain injury by recruiting macrophages and T cells. Thus, CCL12 may be a new target for ICH treatment.


Dihydroartemisinin inhibits endothelial cell tube formation by suppression of the STAT3 signaling pathway.

  • Peng Gao‎ et al.
  • Life sciences‎
  • 2020‎

Endothelial cell (EC) tube formation is crucial for tumor angiogenesis, which becomes a target for chemotherapy. The anti-malaria agent dihydroartemisinin (DHA) inhibited tumor growth and angiogenesis. The aim of this study was to investigate the effects of DHA on EC tube formation and the underlying mechanisms.


Mesenchymal Stem Cells Alleviate Moderate-to-Severe Psoriasis by Reducing the Production of Type I Interferon (IFN-I) by Plasmacytoid Dendritic Cells (pDCs).

  • Maosheng Chen‎ et al.
  • Stem cells international‎
  • 2019‎

The anti-inflammatory and immunomodulatory properties of mesenchymal stem cells (MSCs) have been proposed to be involved in some autoimmune diseases and have been successfully tested in patients and mice. But their contribution to psoriasis and the underlying mechanisms involved remains elusive. Here, we explored the feasibility of using human umbilical cord-derived MSC (hUC-MSC) infusion as a therapeutic approach in an imiquimod- (IMQ-) induced psoriasis mouse model. MSC infusion were found to significantly reduce the severity and development of psoriasis, inhibit the infiltration of immune cells to the skin, and downregulate the expression of several proinflammatory cytokines and chemokines. Our results provide an explanation for the therapeutic effects of MSC infusion by first suppressing neutrophil function and then downregulating the production of type I interferon (IFN-I) by plasmacytoid dendritic cells (pDCs). Therefore, we discovered a novel mechanism of stem cell therapy for psoriasis. In summary, our results showed that MSC infusion could be an effective and safe treatment for psoriasis.


Overexpression of NAC1 confers drug resistance via HOXA9 in colorectal carcinoma cells.

  • Tongfa Ju‎ et al.
  • Molecular medicine reports‎
  • 2017‎

Colorectal carcinoma (CRC) is one of the most common types of malignancy worldwide. Recently, neoadjuvant chemotherapy has become an important treatment strategy for CRC. However, treatment frequently fails due to the development of chemoresistance, which is a major obstacle for positive prognosis. However, the underlying mechanisms of chemoresistance remain unclear. The present study assessed the functions of nucleus accumbens‑associated protein 1 (NAC1), an important transcriptional regulator, in CRC progression. Reverse transcription‑quantitative polymerase chain reaction, western blot analysis and immunohistochemistry were performed to detect the expression levels of NAC1. It was identified that NAC1 was significantly overexpressed in CRC compared with non‑tumorous tissues, indicating an oncogenic role. Following this, gain and loss of function analyses were performed in vitro to further investigate the function of NAC1. Cell viability and caspase‑3/7 activity assays were used to assess chemotherapy‑induced apoptosis. These results indicated that overexpression of NAC1 in CRC cells increased resistance to chemotherapy and inhibited apoptosis. Additionally, RNA interference‑mediated knockdown of NAC1 restored the chemosensitivity of CRC cells. Furthermore, mechanistic investigation revealed that NAC1 increased drug resistance via inducing homeobox A9 (HOXA9) expression, and that knockdown of HOXA9 abrogated NAC1‑induced drug resistance. In conclusion, the results of the present study demonstrated that NAC1 may be a critical factor in the develo-pment of chemoresistance, offering a potential novel target for the treatment of CRC.


Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions.

  • Min Tang‎ et al.
  • Cell research‎
  • 2020‎

Brain tumors are dynamic complex ecosystems with multiple cell types. To model the brain tumor microenvironment in a reproducible and scalable system, we developed a rapid three-dimensional (3D) bioprinting method to construct clinically relevant biomimetic tissue models. In recurrent glioblastoma, macrophages/microglia prominently contribute to the tumor mass. To parse the function of macrophages in 3D, we compared the growth of glioblastoma stem cells (GSCs) alone or with astrocytes and neural precursor cells in a hyaluronic acid-rich hydrogel, with or without macrophage. Bioprinted constructs integrating macrophage recapitulate patient-derived transcriptional profiles predictive of patient survival, maintenance of stemness, invasion, and drug resistance. Whole-genome CRISPR screening with bioprinted complex systems identified unique molecular dependencies in GSCs, relative to sphere culture. Multicellular bioprinted models serve as a scalable and physiologic platform to interrogate drug sensitivity, cellular crosstalk, invasion, context-specific functional dependencies, as well as immunologic interactions in a species-matched neural environment.


RING finger ubiquitin E3 ligase gene TaSDIR1-4A contributes to determination of grain size in common wheat.

  • Jingyi Wang‎ et al.
  • Journal of experimental botany‎
  • 2020‎

Salt and drought-induced RING finger1 (SDIR1) is a RING-type E3 ubiquitin ligase that plays a key role in ABA-mediated responses to salinity and drought stress via the ubiquitination pathway in some plant species. However, its function in wheat (Triticum aestivum) is unknown. Here, we isolated a SDIR1 member in wheat, TaSDIR1-4A, and characterized its E3 ubiquitin ligase activity. DNA polymorphism assays showed the presence of two nucleotide variation sites in the promoter region of TaSDIR1-4A, leading to the detection of the haplotypes Hap-4A-1 and Hap-4A-2 in wheat populations. Association analysis showed that TaSDIR1-4A haplotypes were associated with 1000-grain weight (TGW) across a variety of different environments, including well-watered and heat-stress conditions. Genotypes with Hap-4A-2 had higher TGW than those with Hap-4A-1. Phenotypes in both gene-silenced wheat and transgenic Arabidopsis showed that TaSDIR1-4A was a negative regulator of grain size. Gene expression assays indicated that TaSDIR1-4A was most highly expressed in flag leaves, and expression was higher in Hap-4A-1 accessions than in Hap-4A-2 accessions. The difference might be attributable to the fact that TaERF3 (ethylene response factor) can act as a transcriptional repressor of TaSDIR1-4A in Hap-4A-2 but not in Hap-4A-1. Examination of modern wheat varieties shows that the favorable haplotype has been positively selected in breeding programs in China. The functional marker for TaSDIR1-4A developed in this study should be helpful for future wheat breeding.


Long non-coding RNA ROR recruits histone transmethylase MLL1 to up-regulate TIMP3 expression and promote breast cancer progression.

  • Aixia Hu‎ et al.
  • Journal of translational medicine‎
  • 2021‎

As a significant cause of cancer deaths worldwide, breast cancer continues to be a troublesome malignancy. Long non-coding RNAs (lncRNAs) have been implicated in the development of breast cancer. Abnormal methylation has been associated with unfavorable breast cancer prognosis. Herein, the current study aimed to elucidate the role of lncRNA ROR in breast cancer.


Phytophthora sojae effector Avr1d functions as an E2 competitor and inhibits ubiquitination activity of GmPUB13 to facilitate infection.

  • Yachun Lin‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2021‎

Oomycete pathogens such as Phytophthora secrete a repertoire of effectors into host cells to manipulate host immunity and benefit infection. In this study, we found that an RxLR effector, Avr1d, promoted Phytophthora sojae infection in soybean hairy roots. Using a yeast two-hybrid screen, we identified the soybean E3 ubiquitin ligase GmPUB13 as a host target for Avr1d. By coimmunoprecipitation (Co-IP), gel infiltration, and isothermal titration calorimetry (ITC) assays, we confirmed that Avr1d interacts with GmPUB13 both in vivo and in vitro. Furthermore, we found that Avr1d inhibits the E3 ligase activity of GmPUB13. The crystal structure Avr1d in complex with GmPUB13 was solved and revealed that Avr1d occupies the binding site for E2 ubiquitin conjugating enzyme on GmPUB13. In line with this, Avr1d competed with E2 ubiquitin conjugating enzymes for GmPUB13 binding in vitro, thereby decreasing the E3 ligase activity of GmPUB13. Meanwhile, we found that inactivation of the ubiquitin ligase activity of GmPUB13 stabilized GmPUB13 by blocking GmPUB13 degradation. Silencing of GmPUB13 in soybean hairy roots decreased P. sojae infection, suggesting that GmPUB13 acts as a susceptibility factor. Altogether, this study highlights a virulence mechanism of Phytophthora effectors, by which Avr1d competes with E2 for GmPUB13 binding to repress the GmPUB13 E3 ligase activity and thereby stabilizing the susceptibility factor GmPUB13 to facilitate Phytophthora infection. This study unravels the structural basis for modulation of host targets by Phytophthora effectors and will be instrumental for boosting plant resistance breeding.


ZmbHLH124 identified in maize recombinant inbred lines contributes to drought tolerance in crops.

  • Shaowei Wei‎ et al.
  • Plant biotechnology journal‎
  • 2021‎

Due to climate change, drought has become a severe abiotic stress that affects the global production of all crops. Elucidation of the complex physiological mechanisms underlying drought tolerance in crops will support the cultivation of new drought-tolerant crop varieties. Here, two drought-tolerant lines, RIL70 and RIL73, and two drought-sensitive lines, RIL44 and RIL93, from recombinant inbred lines (RIL) generated from maize drought-tolerant line PH4CV and drought-sensitive line F9721, were selected for a comparative RNA-seq study. Through transcriptome analyses, we found that gene expression differences existed between drought-tolerant and -sensitive lines, but also differences between the drought-tolerant lines, RIL70 and RIL73. ZmbHLH124 in RIL73, named as ZmbHLH124T-ORG which origins from PH4CV and encodes a bHLH type transcription factor, was specifically up-regulated during drought stress. In addition, we identified a substitution in ZmbHLH124 that produced an early stop codon in sensitive lines (ZmbHLH124S-ORG ). Overexpression of ZmbHLH124T-ORG , but not ZmbHLH124S-ORG , in maize and rice enhanced plant drought tolerance and up-regulated the expression of drought-responsive genes. Moreover, we found that ZmbHLH124T-ORG could directly bind the cis-acting elements in ZmDREB2A promoter to enhance its expression. Taken together, this work identified a valuable genetic locus and provided a new strategy for breeding drought-tolerant crops.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: