Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 147 papers

Structural dynamics of the yeast Shwachman-Diamond syndrome protein (Sdo1) on the ribosome and its implication in the 60S subunit maturation.

  • Chengying Ma‎ et al.
  • Protein & cell‎
  • 2016‎

The human Shwachman-Diamond syndrome (SDS) is an autosomal recessive disease caused by mutations in a highly conserved ribosome assembly factor SBDS. The functional role of SBDS is to cooperate with another assembly factor, elongation factor 1-like (Efl1), to promote the release of eukaryotic initiation factor 6 (eIF6) from the late-stage cytoplasmic 60S precursors. In the present work, we characterized, both biochemically and structurally, the interaction between the 60S subunit and SBDS protein (Sdo1p) from yeast. Our data show that Sdo1p interacts tightly with the mature 60S subunit in vitro through its domain I and II, and is capable of bridging two 60S subunits to form a stable 2:2 dimer. Structural analysis indicates that Sdo1p bind to the ribosomal P-site, in the proximity of uL16 and uL5, and with direct contact to H69 and H38. The dynamic nature of Sdo1p on the 60S subunit, together with its strategic binding position, suggests a surveillance role of Sdo1p in monitoring the conformational maturation of the ribosomal P-site. Altogether, our data support a conformational signal-relay cascade during late-stage 60S maturation, involving uL16, Sdo1p, and Efl1p, which interrogates the functional P-site to control the departure of the anti-association factor eIF6.


Mitochondrial translocation and interaction of cofilin and Drp1 are required for erucin-induced mitochondrial fission and apoptosis.

  • Guobing Li‎ et al.
  • Oncotarget‎
  • 2015‎

Cofilin is a member of the actin-depolymerizing factor (ADF) family protein, which plays an essential role in regulation of the mitochondrial apoptosis. It remains unclear how cofilin regulates the mitochondrial apoptosis. Here, we report for the first time that natural compound 4-methylthiobutyl isothiocyanate (erucin) found in consumable cruciferous vegetables induces mitochondrial fission and apoptosis in human breast cancer cells through the mitochondrial translocation of cofilin. Importantly, cofilin regulates erucin-induced mitochondrial fission by interacting with dynamin-related protein (Drp1). Knockdown of cofilin or Drp1 markedly reduced erucin-mediated mitochondrial translocation and interaction of cofilin and Drp1, mitochondrial fission, and apoptosis. Only dephosphorylated cofilin (Ser 3) and Drp1 (Ser 637) are translocated to the mitochondria. Cofilin S3E and Drp1 S637D mutants, which mimick the phosphorylated forms, suppressed mitochondrial translocation, fission, and apoptosis. Moreover, both dephosphorylation and mitochondrial translocation of cofilin and Drp1 are dependent on ROCK1 activation. In vivo findings confirmed that erucin-mediated inhibition of tumor growth in a breast cancer cell xenograft mouse model is associated with the mitochondrial translocation of cofilin and Drp1, fission and apoptosis. Our study reveals a novel role of cofilin in regulation of mitochondrial fission and suggests erucin as a potential drug for treatment of breast cancer.


Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein.

  • Weijiao Huang‎ et al.
  • Cell research‎
  • 2012‎

The Beclin 1 gene is a haplo-insufficient tumor suppressor and plays an essential role in autophagy. However, the molecular mechanism by which Beclin 1 functions remains largely unknown. Here we report the crystal structure of the evolutionarily conserved domain (ECD) of Beclin 1 at 1.6 Å resolution. Beclin 1 ECD exhibits a previously unreported fold, with three structural repeats arranged symmetrically around a central axis. Beclin 1 ECD defines a novel class of membrane-binding domain, with a strong preference for lipid membrane enriched with cardiolipin. The tip of a surface loop in Beclin 1 ECD, comprising three aromatic amino acids, acts as a hydrophobic finger to associate with lipid membrane, consequently resulting in the deformation of membrane and liposomes. Mutation of these aromatic residues rendered Beclin 1 unable to stably associate with lipid membrane in vitro and unable to fully rescue autophagy in Beclin 1-knockdown cells in vivo. These observations form an important framework for deciphering the biological functions of Beclin 1.


Improving accuracy of genomic prediction by genetic architecture based priors in a Bayesian model.

  • Ning Gao‎ et al.
  • BMC genetics‎
  • 2015‎

In recent years, with the development of high-throughput sequencing technology and the commercial availability of genotyping bead chips, more attention is being directed towards the utilization of abundant genetic markers in animal and plant breeding programs, human disease risk prediction and personal medicine. Several useful approaches to accomplish genomic prediction have been developed and used widely, but still have room for improvement to gain more accuracy. In this study, an improved Bayesian approach, termed BayesBπ, which differs from the original BayesB in priors assigning, is proposed. An effective method for calculating the locus-specific π by converting p-values from association between SNPs and traits' phenotypes is given and systemically validated using a German Holstein dairy cattle population. Furthermore, the new method is applied to a loblolly pine (Pinus taeda) dataset.


The Effects of Lactobacillus acidophilus on the Intestinal Smooth Muscle Contraction through PKC/MLCK/MLC Signaling Pathway in TBI Mouse Model.

  • Bo Sun‎ et al.
  • PloS one‎
  • 2015‎

Clinical studies have shown that probiotics influence gastrointestinal motility. However, the molecular mechanisms by which probiotic Lactobacillus modulates intestinal motility in traumatic brain injury (TBI) mouse model have not been explored. In the present study, we provided evidence showing that treatment of TBI mice with Lactobacillus acidophilus significantly improved the terminal ileum villus morphology, restored the impaired interstitial cells of Cajal (ICC) and the disrupted ICC networks after TBI, and prevented TBI-mediated inhibition of contractile activity in intestinal smooth muscle. Mechanistically, the decreased concentration of MLCK, phospho-MLC20 and phospho-MYPT1 and increased concentration of MLCP and PKC were observed after TBI, and these events mediated by TBI were efficiently prevented by Lactobacillus acidophilus application. These findings may provide a novel mechanistic basis for the application of Lactobacillus acidophilus in the treatment of TBI.


Tanshinone IIA inhibits HIF-1α and VEGF expression in breast cancer cells via mTOR/p70S6K/RPS6/4E-BP1 signaling pathway.

  • Guobing Li‎ et al.
  • PloS one‎
  • 2015‎

Hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) play important roles in angiogenesis and tumor growth. Tanshinone IIA (T2A) is a novel antiangiogenic agent with promising antitumor effects; however, the molecular mechanism underlying the antiangiogenic effects of T2A remains unclear. In the present study, we provided evidence showing that T2A inhibited angiogenesis and breast cancer growth by down-regulating VEGF expression. Specifically, T2A repressed HIF-1α expression at the translational level and inhibited the transcriptional activity of HIF-1α, which led to the down-regulation of VEGF expression. Suppression of HIF-1α synthesis by T2A correlated with strong dephosphorylation of mammalian target of rapamycin (mTOR) and its effectors ribosomal protein S6 kinase (p70S6K) and eukaryotic initiation factor 4E-binding protein-1 (4E-BP1), a pathway regulating HIF-1α expression at the translational level. In addition, we also found that T2A inhibited the angiogenesis and growth of human breast cancer xenografts in nude mice through suppression of HIF-1α and VEGF. Our study provides novel perspectives and potential targets for the treatment of human breast cancer.


Genome-Wide DNA Methylation Analysis of Hypothalamus During the Onset of Puberty in Gilts.

  • Xiaolong Yuan‎ et al.
  • Frontiers in genetics‎
  • 2019‎

Although selection of the early age at puberty in gilts will make for a favorable effect on the reproductivity of sow, a large proportion of phenotypic variation in age at puberty of gilts cannot be explained by genetics. Previous studies have implicated hypothalamic DNA methylation in the onset of puberty in mammals. However, the underlying molecular mechanism regarding the regulation of the onset of puberty has remained largely unexplored in gilts. Herein, the genome-scale DNA methylation of hypothalamus was acquired, using the reduced representation bisulfite sequencing, to compare and describe the changes of DNA methylation across Pre-, In- and Post-pubertal gilts. In this study, the average methylation levels of CpGs and CpHs (where H = C, T, or A) in CpG islands- and gene-related regions were gradually decreased in hypothalamic methylomes during the pubertal transition. Comparisons of Pre- vs. In-, In- vs. Post-, and Pre- vs. Post-pubertal stage revealed that there were 85726, 92914, and 100421 differentially methylated CpGs and 5940, 14804, and 16893 differentially methylated CpHs (where H = C, T, or A) in the hypothalamic methylomes. The methylation changes of CpHs were more dynamic than that of CpGs, and methylation changes of CpGs and CpHs were likely to be, respectively, involved in the developmental processes of reproduction and the molecular processes of cellular communications in the hypothalamus. Moreover, methylation changes of CpHs were observed to overrepresent in the quantitative trait loci of age at puberty, and the biological function of these CpH methylation changes was enriched in the pancreas development in gilts. Furthermore, the mRNA levels of several differentially CpG or CpH methylated genes related to the transcription of RNA II polymerase, GnRH signaling pathway, Estrogen signaling pathway, PI3K-AKt signaling pathway, and Insulin signaling pathway, including MAX, MMP2, FGF11, IGF1R, FGF21, and GSK3B, were significantly changed across these pubertal stages in the hypothalamus. These results will help our understanding of how DNA methylation contributes to phenotypic variation of age at puberty.


Depletion of Ars2 inhibits cell proliferation and leukemogenesis in acute myeloid leukemia by modulating the miR-6734-3p/p27 axis.

  • Xiaoye Hu‎ et al.
  • Leukemia‎
  • 2019‎

Ars2 is a component of the nuclear cap-binding complex (CBC) that contributes to microRNA biogenesis and is required for cellular proliferation. Little is known regarding the functional role of Ars2 in cell proliferation and leukemogenesis of acute myeloid leukemia. Here, we show that the elevated expression of Ars2 was observed in acute myeloid leukemia (AML) cell lines and bone marrow samples from AML patients and was correlated with poorer overall survival. Overexpression of Ars2 promoted cell proliferation and colony formation in AML cells, whereas depletion of Ars2 inhibited cell proliferation and colony formation. Mechanistic studies reveal that depletion of Ars2 suppressed the interaction of Ars2 with CBC and led to alterations in miRNA processing. Furthermore, Ars2 depletion reduced the levels of miR-6734-3p, resulting in upregulation of p27 and culminating in cell cycle arrest at the G1 phase. In vivo studies indicate that depletion of Ars2 significantly reduced leukemic cell burden and prolonged the survival time of the leukemia-bearing mice. These findings indicate that Ars2 may not only play a crucial role in the regulation of cell proliferation and leukemogenesis, but could also be identified as a critical therapeutic target for treatment of AML.


The cyclohexene derivative MC-3129 exhibits antileukemic activity via RhoA/ROCK1/PTEN/PI3K/Akt pathway-mediated mitochondrial translocation of cofilin.

  • Yi Zheng‎ et al.
  • Cell death & disease‎
  • 2018‎

The effects of MC-3129, a synthetic cyclohexene derivative, on cell viability and apoptosis have been investigated in human leukemia cells. Exposure of leukemia cells to MC-3129 led to the inhibition of cell viability and induction of apoptosis through the dephosphorylation and mitochondrial translocation of cofilin. A mechanistic study revealed that interruption of the RhoA/ROCK1/PTEN/PI3K/Akt signaling pathway plays a crucial role in the MC-3129-mediated dephosphorylation and mitochondrial translocation of cofilin and induction of apoptosis. Our in vivo study also showed that the MC-3129-mediated inhibition of the tumor growth in a mouse leukemia xenograft model is associated with the interruption of ROCK1/PTEN/PI3K/Akt signaling and apoptosis. Molecular docking suggested that MC-3129 might activate the RhoA/ROCK1 pathway by targeting LPAR2. Collectively, these findings suggest a hierarchical model, in which the induction of apoptosis by MC-3129 primarily results from the activation of RhoA/ROCK1/PTEN and inactivation of PI3K/Akt, leading to the dephosphorylation and mitochondrial translocation of cofilin, and culminating in cytochrome c release, caspase activation, and apoptosis. Our study reveals a novel role for RhoA/ROCK1/PTEN/PI3K/Akt signaling in the regulation of mitochondrial translocation of cofilin and apoptosis and suggests MC-3129 as a potential drug for the treatment of human leukemia.


Pristane induces autophagy in macrophages, promoting a STAT1-IRF1-TLR3 pathway and arthritis.

  • Wenhua Zhu‎ et al.
  • Clinical immunology (Orlando, Fla.)‎
  • 2017‎

Autophagy is involved in both innate and adaptive immune regulation. We propose that autophagy regulates activation of TLR3 in macrophages and is thereby essential for development of pristane-induced arthritis. We found that pristane treatment induced autophagy in macrophages in vitro and in vivo, in spleen cells from pristane injected rats. The induced autophagy was associated with STAT1 phosphorylation and expression of IRF1 and TLR3. Blocking the pristane activated autophagy by Wortmannin and Bafilomycin A1 or by RNAi of Becn1 led to a downregulation of the associated STAT1-IRF1-TLR3 pathway. Most importantly, the development of arthritis was alleviated by suppressing either autophagy or TLR3. We conclude that pristane enhanced autophagy, leading to a STAT1-IRF1 controlled upregulation of TLR3 expression in macrophages, is a pathogenic mechanism in the development of arthritis.


Genomic Prediction of Complex Phenotypes Using Genic Similarity Based Relatedness Matrix.

  • Ning Gao‎ et al.
  • Frontiers in genetics‎
  • 2018‎

In the last years, a series of methods for genomic prediction (GP) have been established, and the advantages of GP over pedigree best linear unbiased prediction (BLUP) have been reported. However, the majority of previously proposed GP models are purely based on mathematical considerations while seldom take the abundant biological knowledge into account. Prediction ability of those models largely depends on the consistency between the statistical assumptions and the underlying genetic architectures of traits of interest. In this study, gene annotation information was incorporated into GP models by constructing haplotypes with SNPs mapped to genic regions. Haplotype allele similarity between pairs of individuals was measured through different approaches at single gene level and then converted into whole genome level, which was then treated as a special kernel and used in kernel based GP models. Results shown that the gene annotation guided methods gave higher or at least comparable predictive ability in some traits, especially in the Arabidopsis dataset and the rice breeding population. Compared to SNP models and haplotype models without gene annotation, the gene annotation based models improved the predictive ability by 0.56~26.67% in the Arabidopsis and 1.62~16.53% in the rice breeding population, respectively. However, incorporating gene annotation slightly improved the predictive ability for several traits but did not show any extra gain for the rest traits in a chicken population. In conclusion, integrating gene annotation into GP models could be beneficial for some traits, species, and populations compared to SNP models and haplotype models without gene annotation. However, more studies are yet to be conducted to implicitly investigate the characteristics of these gene annotation guided models.


Hirsutine induces mPTP-dependent apoptosis through ROCK1/PTEN/PI3K/GSK3β pathway in human lung cancer cells.

  • Rong Zhang‎ et al.
  • Cell death & disease‎
  • 2018‎

Hirsutine extracted from Uncaria rhynchophylla has been shown to exhibit anti-cancer activity. However, the molecular mechanism by which hirsutine exhibits anti-lung cancer activity remains unclear. In the present study, we showed that hirsutine induces apoptosis in human lung cancer cells via loss of mitochondrial membrane potential (∆ψm), adenosine triphosphate (ATP) depletion, ROS production, as well as cytochrome c release. Dephosphorylation of GSK3β is involved in hirsutine-mediated mitochondrial permeability transition pore (mPTP) opening through ANT1/CypD interaction. Mechanistic study revealed that interruption of ROCK1/PTEN/PI3K/Akt signaling pathway plays a critical role in hirsutine-mediated GSK3β dephosphorylation and mitochondrial apoptosis. Our in vivo study also showed that hirsutine effectively inhibits tumor growth in a A549 xenograft mouse model through ROCK1/PTEN/PI3K/Akt signaling-mediated GSK3β dephosphorylation and apoptosis. Collectively, these findings suggest a hierarchical model in which induction of apoptosis by hirsutine stems primarily from activation of ROCK1 and PTEN, inactivation of PI3K/Akt, leading in turn to GSK3β dephosphorylation and mPTP opening, and culminating in caspase-3 activation and apoptosis. These findings could provide a novel mechanistic basis for the application of hirsutine in the treatment of human lung cancer.


6-Shogaol induces apoptosis in human leukemia cells through a process involving caspase-mediated cleavage of eIF2α.

  • Qun Liu‎ et al.
  • Molecular cancer‎
  • 2013‎

6-Shogaol is a promising antitumor agent isolated from dietary ginger (Zingiber officinale). However, little is known about the efficacy of 6-shogaol on leukemia cells. Here we investigated the underlying mechanism of 6-shogaol induced apoptosis in human leukemia cells in vitro and in vivo.


Structural insights into the assembly of the 30S ribosomal subunit in vivo: functional role of S5 and location of the 17S rRNA precursor sequence.

  • Zhixiu Yang‎ et al.
  • Protein & cell‎
  • 2014‎

The in vivo assembly of ribosomal subunits is a highly complex process, with a tight coordination between protein assembly and rRNA maturation events, such as folding and processing of rRNA precursors, as well as modifications of selected bases. In the cell, a large number of factors are required to ensure the efficiency and fidelity of subunit production. Here we characterize the immature 30S subunits accumulated in a factor-null Escherichia coli strain (∆rsgA∆rbfA). The immature 30S subunits isolated with varying salt concentrations in the buffer system show interesting differences on both protein composition and structure. Specifically, intermediates derived under the two contrasting salt conditions (high and low) likely reflect two distinctive assembly stages, the relatively early and late stages of the 3' domain assembly, respectively. Detailed structural analysis demonstrates a mechanistic coupling between the maturation of the 5' end of the 17S rRNA and the assembly of the 30S head domain, and attributes a unique role of S5 in coordinating these two events. Furthermore, our structural results likely reveal the location of the unprocessed terminal sequences of the 17S rRNA, and suggest that the maturation events of the 17S rRNA could be employed as quality control mechanisms on subunit production and protein translation.


Ribosome Profiling Reveals Genome-wide Cellular Translational Regulation upon Heat Stress in Escherichia coli.

  • Yanqing Zhang‎ et al.
  • Genomics, proteomics & bioinformatics‎
  • 2017‎

Heat shock response is a classical stress-induced regulatory system in bacteria, characterized by extensive transcriptional reprogramming. To compare the impact of heat stress on the transcriptome and translatome in Escherichia coli, we conducted ribosome profiling in parallel with RNA-Seq to investigate the alterations in transcription and translation efficiency when E. coli cells were exposed to a mild heat stress (from 30 °C to 45 °C). While general changes in ribosome footprints correlate with the changes of mRNA transcripts upon heat stress, a number of genes show differential changes at the transcription and translation levels. Translation efficiency of a few genes that are related to environment stimulus response is up-regulated, and in contrast, some genes functioning in mRNA translation and amino acid biosynthesis are down-regulated at the translation level in response to heat stress. Moreover, our ribosome occupancy data suggest that in general ribosomes accumulate remarkably in the starting regions of ORFs upon heat stress. This study provides additional insights into bacterial gene expression in response to heat stress, and suggests the presence of stress-induced but yet-to-be characterized cellular regulatory mechanisms of gene expression at translation level.


A binding-block ion selective mechanism revealed by a Na/K selective channel.

  • Jie Yu‎ et al.
  • Protein & cell‎
  • 2018‎

Mechanosensitive (MS) channels are extensively studied membrane protein for maintaining intracellular homeostasis through translocating solutes and ions across the membrane, but its mechanisms of channel gating and ion selectivity are largely unknown. Here, we identified the YnaI channel as the Na+/K+ cation-selective MS channel and solved its structure at 3.8 Å by cryo-EM single-particle method. YnaI exhibits low conductance among the family of MS channels in E. coli, and shares a similar overall heptamer structure fold with previously studied MscS channels. By combining structural based mutagenesis, quantum mechanical and electrophysiological characterizations, we revealed that ion selective filter formed by seven hydrophobic methionine (YnaIMet158) in the transmembrane pore determined ion selectivity, and both ion selectivity and gating of YnaI channel were affected by accompanying anions in solution. Further quantum simulation and functional validation support that the distinct binding energies with various anions to YnaIMet158 facilitate Na+/K+ pass through, which was defined as binding-block mechanism. Our structural and functional studies provided a new perspective for understanding the mechanism of how MS channels select ions driven by mechanical force.


Morusin inhibits cell proliferation and tumor growth by down-regulating c-Myc in human gastric cancer.

  • Feng Wang‎ et al.
  • Oncotarget‎
  • 2017‎

Morusin is a pure extract from the root bark of Morus australis (Moraceae). In recent years, morusin has been reported to exhibit anti-tumor biological activity in some types of human cancers through different mechanisms. Here, we attempted to investigate the inhibitory effect and mechanism of morusin on gastric cancer. Morusin markedly inhibited gastric cancer cell proliferation by down-regulating CDKs and Cyclins, such as CDK2, CDK4, Cyclin D1 and Cyclin E1. Additionally, morusin suppressed tumor growth in vitro and in vivo. Up-regulation of CDKs and Cyclins in gastric cancer cells was induced by c-Myc binding at the E-Box regions of CDKs and the Cyclin promoter. In addition, compared with the control group, the morusin-treated group showed reduced expression of c-Myc and c-Myc protein binding at the E-Box regions. Based on these results, we overexpressed c-Myc in gastric cancer cells and found that overexpressing c-Myc rescued morusin-induced inhibition of cell proliferation and tumor growth. These results suggest that morusin inhibits cell proliferation and tumor growth by down-regulating c-Myc in human gastric cancer.


Trehalose Induces Autophagy Against Inflammation by Activating TFEB Signaling Pathway in Human Corneal Epithelial Cells Exposed to Hyperosmotic Stress.

  • Zhao Liu‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2020‎

Autophagy plays an important role in balancing the inflammatory response to restore homeostasis. The aim of this study was to explore the mechanism by which trehalose suppresses inflammatory cytokines via autophagy activation in primary human corneal epithelial cells (HCECs) exposed to hyperosmotic stress.


Clinical Studies on the Treatment of Novel Coronavirus Pneumonia With Traditional Chinese Medicine-A Literature Analysis.

  • Zhihuan Zhou‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

This study aims to analyze the current situation and characteristics of traditional Chinese medicine for treatment of novel coronavirus pneumonia, clarify its clinical advantages and provide a reference for clinical treatment.


Whether Keratectasia Area Shown in Corneal Topography Is Appropriate for Evaluating the Effect of Corneal Cross-Linking for Keratoconus: A 12-Month Follow-Up Study.

  • Jia Wang‎ et al.
  • BioMed research international‎
  • 2019‎

To analyze the keratectasia area (KEA) shown in corneal topography before and after corneal cross-linking (CXL) in patients with progressive keratoconus (KC) and figure out whether KEA is appropriate for evaluating the effect of CXL.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: