Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 papers out of 147 papers

Optimizing the Performance of the Visual P300-Speller Through Active Mental Tasks Based on Color Distinction and Modulation of Task Difficulty.

  • Qi Li‎ et al.
  • Frontiers in human neuroscience‎
  • 2019‎

Objective: P300-speller is the most commonly used brain-computer interface (BCI) for providing a means of communication to patients with amyotrophic lateral sclerosis. However, the performance of the P300-speller BCI is still inadequate. We investigated whether the performance of P300-speller can be further improved by increasing the mental effort required of the user. Methods: We designed two active mental tasks for a P300-speller based on a differently colored smiling cartoon-face paradigm. The tasks were based on color distinction, and their difficulty was modulated. One of the active mental tasks (DC task) required participants to focus on and distinguish the color of a target, while the other task (CN + DC task) required participants to simultaneously count the number of times a target flashed and distinguish its color. Results: The amplitudes of the event-related potentials (ERPs) in both DC and CN + DC tasks were higher than that in the CN task. The significant difference in the amplitudes between the DC and CN tasks was observed around the parietal-central area from 440 to 800 ms (late positive component, LPC), and that between the CN + DC and CN tasks was observed around the left-frontal and right-frontal areas from 320 to 480 ms (P3a) and the parietal-central area from 480 to 800 ms (P3b and LPC). The latency of the P300 potential in the CN + DC task was significantly longer than that in the CN task at F3, Fz, F4, C4, Pz, and P4 (P < 0.05). Offline (P < 0.05 at superposing once, twice, and thrice) and online (P < 0.001) classification results showed that the average accuracies in the CN + DC task were significantly greater than that in the CN task. Similar results were found for online information transfer rates (ITRs; P < 0.001). In addition, we found that the average online accuracies in the DC task were greater than those in the CN task, although the difference was not statistically significant (P = 0.051). Significance: The active mental task based on task difficulty modulation can significantly improve the performance of the P300-speller, and that based on color distinction shows a trend of improved performance.


Disome-seq reveals widespread ribosome collisions that promote cotranslational protein folding.

  • Taolan Zhao‎ et al.
  • Genome biology‎
  • 2021‎

The folding of proteins is challenging in the highly crowded and sticky environment of a cell. Regulation of translation elongation may play a crucial role in ensuring the correct folding of proteins. Much of our knowledge regarding translation elongation comes from the sequencing of mRNA fragments protected by single ribosomes by ribo-seq. However, larger protected mRNA fragments have been observed, suggesting the existence of an alternative and previously hidden layer of regulation.


Engineering and functional analysis of yeast with a monotypic 40S ribosome subunit.

  • Xin Hu‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

Emerging evidence reveals that ribosomes are not monolithic but dynamic machines with heterogeneous protein compositions that can reshape ribosomal translational abilities and cellular adaptation to environmental changes. Duplications of ribosomal protein (RP) genes are ubiquitous among organisms and are believed to affect cell function through paralog-specific regulation (e.g., by generating heterogeneous ribosomes) and/or gene dose amplification. However, direct evaluations of their impacts on cell function remain elusive due to the highly heterogeneous cellular RP pool. Here, we engineered a yeast with homogeneous 40S RP paralog compositions, designated homo-40S, by deleting the entire set of alternative duplicated genes encoding yeast 40S RP paralogs. Homo-40S displayed mild growth defects along with high sensitivity to the translation inhibitor paromomycin and a significantly increased stop codon readthrough. Moreover, doubling of the remaining RP paralogous genes in homo-40S rescued these phenotypes markedly, although not fully, compared to the wild-type phenotype, indicating that the dose of 40S RP genes together with the heterogeneity of the contents was vital for maintaining normal translational functionalities and growth robustness. Additional experiments revealed that homo-40S improved paromomycin tolerance via acquisition of bypass mutations or evolved to be diploid to generate fast-growing derivatives, highlighting the mutational robustness of engineered yeast to accommodate environmental and genetic changes. In summary, our work demonstrated that duplicated RP paralogs impart robustness and phenotypic plasticity through both gene dose amplification and paralog-specific regulation, paving the way for the direct study of ribosome biology through monotypic ribosomes with a homogeneous composition of specific RP paralogs.


Investigating the toxically homogenous effects of three lanthanides on zebrafish.

  • Zhihui Huang‎ et al.
  • Comparative biochemistry and physiology. Toxicology & pharmacology : CBP‎
  • 2022‎

The adverse effects of rare earth elements (REEs) have been increasingly reported in the past decades and have raised concern about their environmental toxicities. However, the available data is insufficient to elucidate the toxic effects, mechanisms, and whether the toxicity across all REEs is uniform. In this study, zebrafish were exposed to 0, 0.8, 1.6, 3.2, 6.4, 12.8 and 25.6 mg/L Ln(NO3)3•6H2O to test the acute toxicity of La(III), Ce(III), and Nd(III). LC50 of the three lanthanides was compared to the extent of the impact on gene expression. We carried out the functionally grouped network-based transcriptome analysis using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to explore the molecular mechanisms. The acute toxicity test showed that LC50 of La(III), Ce(III), and Nd(III) were 2.53, 2.03, and 2.76 mg/L, respectively. Consistent with acute toxicity, Ce(III) caused a little more DEGs than La(III) and Nd(III). Some biological processes such as metabolism of xenobiotics, oocyte meiosis, steroid biosynthesis, DNA replication, and p53 signaling pathway were affected following exposure of all the three lanthanides. Ce(III) also induced changes in the chemokine-mediated signaling pathway. The results indicated that the lethality is comparable, and the toxic patterns are similar across the three lanthanides. This study gives comparative research on the toxicities of three lanthanides to model organism zebrafish.


Structural dynamics of AAA + ATPase Drg1 and mechanism of benzo-diazaborine inhibition.

  • Chengying Ma‎ et al.
  • Nature communications‎
  • 2022‎

The type II AAA + ATPase Drg1 is a ribosome assembly factor, functioning to release Rlp24 from the pre-60S particle just exported from nucleus, and its activity in can be inhibited by a drug molecule diazaborine. However, molecular mechanisms of Drg1-mediated Rlp24 removal and diazaborine-mediated inhibition are not fully understood. Here, we report Drg1 structures in different nucleotide-binding and benzo-diazaborine treated states. Drg1 hexamers transits between two extreme conformations (planar or helical arrangement of protomers). By forming covalent adducts with ATP molecules in both ATPase domain, benzo-diazaborine locks Drg1 hexamers in a symmetric and non-productive conformation to inhibits both inter-protomer and inter-ring communication of Drg1 hexamers. We also obtained a substrate-engaged mutant Drg1 structure, in which conserved pore-loops form a spiral staircase to interact with the polypeptide through a sequence-independent manner. Structure-based mutagenesis data highlight the functional importance of the pore-loop, the D1-D2 linker and the inter-subunit signaling motif of Drg1, which share similar regulatory mechanisms with p97. Our results suggest that Drg1 may function as an unfoldase that threads a substrate protein within the pre-60S particle.


Profiling of differentially expressed circRNAs and functional prediction in peripheral blood mononuclear cells from patients with rheumatoid arthritis.

  • Li Xue‎ et al.
  • Annals of medicine‎
  • 2023‎

Rheumatoid arthritis (RA) is a chronic autoimmune disease associated with an increased risk of death, but its underlying mechanisms are not fully understood. Circular RNAs (circRNAs) have recently been implicated in various biological processes. The aim of this study was to investigate the key circRNAs related to RA.


Autophagy Activation Protects Ocular Surface from Inflammation in a Dry Eye Model In Vitro.

  • Zhao Liu‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Inflammation is the main pathophysiology of dry eye, characterized by tear film instability and hyperosmolarity. The aim of this study was to investigate the association of inflammation and cellular autophagy using an in vitro dry eye model with primary cultured human corneal epithelial cells (HCECs). Primary HCECs cultured with fresh limbal explants from donors were switched to a hyperosmotic medium (450 mOsM) by adding sodium chloride into the culture medium. We observed the stimulated inflammatory mediators, TNF-α, IL-1β, IL-6 and IL-8, as well as the increased expression of autophagy related genes, Ulk1, Beclin1, Atg5 and LC3B, as evaluated by RT-qPCR and ELISA. The immunofluorescent staining of LC3B and Western blotting revealed the activated autophagosome formation and autophagic flux, as evidenced by the increased LC3B autophagic cells with activated Beclin1, Atg5, Atg7 and LC3B proteins, and the decreased levels of P62 protein in HCECs. Interestingly, the autophagy activation was later at 24 h than inflammation induced at 4 h in HCECs exposed to 450 mOsM. Furthermore, application of rapamycin enhanced autophagy activation also reduced the inflammatory mediators and restored cell viability in HCECs exposed to the hyperosmotic medium. Our findings for the first time demonstrate that the autophagy activation is a late phase response to hyperosmotic stress, and is enhanced by rapamycin, which protects HCECs by suppressing inflammation and promoting cells survival, suggesting a new therapeutic potential to treat dry eye diseases.


Structural Insight into the MCM double hexamer activation by Dbf4-Cdc7 kinase.

  • Jiaxuan Cheng‎ et al.
  • Nature communications‎
  • 2022‎

The Dbf4-dependent kinase Cdc7 (DDK) regulates DNA replication initiation by phosphorylation of the MCM double hexamer (MCM-DH) to promote helicase activation. Here, we determine a series of cryo electron microscopy (cryo-EM) structures of yeast DDK bound to the MCM-DH. These structures, occupied by one or two DDKs, differ primarily in the conformations of the kinase core. The interactions of DDK with the MCM-DH are mediated exclusively by subunit Dbf4 straddling across the hexamer interface on the three N-terminal domains (NTDs) of subunits Mcm2, Mcm6, and Mcm4. This arrangement brings Cdc7 close to its only essential substrate, the N-terminal serine/threonine-rich domain (NSD) of Mcm4. Dbf4 further displaces the NSD from its binding site on Mcm4-NTD, facilitating an immediate targeting of this motif by Cdc7. Moreover, the active center of Cdc7 is occupied by a unique Dbf4 inhibitory loop, which is disengaged when the kinase core assumes wobbling conformations. This study elucidates the versatility of Dbf4 in regulating the ordered multisite phosphorylation of the MCM-DH by Cdc7 kinase during helicase activation.


Transcription shapes DNA replication initiation to preserve genome integrity.

  • Yang Liu‎ et al.
  • Genome biology‎
  • 2021‎

Early DNA replication occurs within actively transcribed chromatin compartments in mammalian cells, raising the immediate question of how early DNA replication coordinates with transcription to avoid collisions and DNA damage.


Transcriptome analysis reveals the roles of nitrogen metabolism and sedoheptulose bisphosphatase pathway in methanol-dependent growth of Corynebacterium glutamicum.

  • Liwen Fan‎ et al.
  • Microbial biotechnology‎
  • 2021‎

Methanol is a promising feedstock for biomanufacturing of fuels and chemicals. Although efforts have been made to engineer platform microorganisms for methanol bioconversion, the substrate uptake and cell growth rates on methanol are still unsatisfactory, suggesting certain limiting factors remain unsolved. Herein, we analysed the global metabolic regulation changes between an evolved methanol-dependent Corynebacterium glutamicum mutant and its ancestral strain by transcriptome analysis. Many genes involved in central metabolism including glycolysis, amino acid biosynthesis and energy generation were regulated, implying the adaptive laboratory evolution reprogrammed the cellular metabolism for methanol utilization. We then demonstrated that nitrate could serve as a complementary electron acceptor for aerobic methanol metabolism, and the biosynthesis of several amino acids limited methylotrophic growth. Finally, the sedoheptulose bisphosphatase pathway for generating methanol assimilation acceptor was found effective in C. glutamicum. This study identifies limiting factors of methanol metabolism and provides engineering targets for developing superior synthetic methylotrophs.


Genome-Wide Association Study of Meat Quality Traits in a Three-Way Crossbred Commercial Pig Population.

  • Guangxiong Gao‎ et al.
  • Frontiers in genetics‎
  • 2021‎

Meat quality is an important trait for pig-breeding programs aiming to meet consumers' demands. Geneticists must improve meat quality based on their understanding of the underlying genetic mechanisms. Previous studies showed that most meat-quality indicators were low-to-moderate heritability traits; therefore, improving meat quality using conventional techniques remains a challenge. Here, we performed a genome-wide association study of meat-quality traits using the GeneSeek Porcine SNP50K BeadChip in 582 crossbred Duroc × (Landrace × Yorkshire) commercial pigs (249 males and 333 females). Meat conductivity, marbling score, moisture, meat color, pH, and intramuscular fat (IMF) content were investigated. The genome-wide association study was performed using both fixed and random model Circulating Probability Unification (FarmCPU) and a mixed linear model (MLM) with the rMVP software. The genomic heritability of the studied traits ranged from 0.13 ± 0.07 to 0.55 ± 0.08 for conductivity and meat color, respectively. Thirty-two single-nucleotide polymorphisms (SNPs) were identified for meat quality in the crossbred pigs using both FarmCPU and MLM. Among the detected SNPs, five, nine, seven, four, six, and five were significantly associated with conductivity, IMF, marbling score, meat color, moisture, and pH, respectively. Several candidate genes for meat quality were identified in the detected genomic regions. These findings will contribute to the ongoing improvement of meat quality, meeting consumer demands and improving the economic outlook for the swine industry.


Fun30 nucleosome remodeller regulates white-to-opaque switching in Candida albicans.

  • Ning Gao‎ et al.
  • Acta biochimica et biophysica Sinica‎
  • 2023‎

Candida albicans ( C. albicans) is an opportunistic pathogen in humans and possesses a white-opaque heritable switching system. Wor1 is a master regulator of white-opaque switching and is essential for opaque cell formation in C. albicans. However, the regulatory network of Wor1 in white-opaque switching is still vague. In this study, we obtain a series of Wor1-interacting proteins using LexA-Wor1 as bait. Among these proteins, function unknown now 30 (Fun30) interacts with Wor1 in vitro and in vivo. Fun30 expression is upregulated in opaque cells at the transcriptional and protein levels. Loss of FUN30 attenuates white-to-opaque switching, while ectopic expression of FUN30 significantly increases white-to-opaque switching in an ATPase activity-dependent manner. Furthermore, FUN30 upregulation is dependent on CO 2; loss of FLO8, a key CO 2-sensing transcriptional regulator, abolishes FUN30 upregulation. Interestingly, deletion of FUN30 affects the WOR1 expression regulation feedback loop. Thus, our results indicate that the chromatin remodeller Fun30 interacts with Wor1 and is required for WOR1 expression and opaque cell formation.


Paroxetine Attenuates Chondrocyte Pyroptosis and Inhibits Osteoclast Formation by Inhibiting NF-κB Pathway Activation to Delay Osteoarthritis Progression.

  • Xiaohang Zheng‎ et al.
  • Drug design, development and therapy‎
  • 2023‎

Osteoarthritis (OA), a common chronic joint disease, is characterized by cartilage degeneration and subchondral bone reconstruction. NF-κB signaling pathway-activated inflammation and NLRP3-induced pyroptosis play essential roles in the development of OA. In this study, we examine whether paroxetine can inhibit pyroptosis and reduce osteoclast formation, thereby delaying the destruction of knee joints.


Effect of optimized new Shengmai powder on exercise tolerance in rats with heart failure by regulating the ubiquitin-proteasome signaling pathway.

  • Shuai Wang‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2023‎

Decreased exercise tolerance is a common symptom in patients with heart failure, which is closely related to protein degradation and apoptosis regulated by the ubiquitin-proteasome signaling (UPS) pathway. In this study, the effect of Chinese medicine, optimized new Shengmai powder, on exercise tolerance in rats with heart failure was investigated via the UPS pathway.


ROS-mediated activation and mitochondrial translocation of CaMKII contributes to Drp1-dependent mitochondrial fission and apoptosis in triple-negative breast cancer cells by isorhamnetin and chloroquine.

  • Jinjiao Hu‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2019‎

Triple-negative breast cancer (TNBC) is often aggressive and associated with a poor prognosis. Due to the lack of available targeted therapies and to problems of resistance with conventional chemotherapeutic agents, finding new treatments for TNBC remains a challenge and a better therapeutic strategy is urgently required.


Cortical network underlying audiovisual semantic integration and modulation of attention: An fMRI and graph-based study.

  • Yang Xi‎ et al.
  • PloS one‎
  • 2019‎

Many neuroimaging and electrophysiology studies have suggested that semantic integration as a high-level cognitive process involves various cortical regions and is modulated by attention. However, the cortical network specific to semantic integration and the modulatory mechanism of attention remain unclear. Here, we designed an fMRI experiment using "bimodal stimulus" to extract information regarding the cortical activation related to the effects of semantic integration with and without attention, and then analyzed the characteristics of the cortical network and the modulating effect of attention on semantic integration. To further investigate the related cortical regions, we constructed a functional brain network for processing attended AV stimuli to evaluate the nodal properties using a graph-based method. The results of the fMRI and graph-based analyses showed that the semantic integration with attention activated the anterior temporal lobe (ATL), temporoparietal junction (TPJ), and frontoparietal cortex, with the ATL showing the highest nodal degree and efficiency; in contrast, semantic integration without attention involved a relatively small cortical network, including the posterior superior temporal gyrus (STG), Heschl's gyrus (HG), and precentral gyrus. These results indicated that semantic integration is a complex cognitive process that occurs not only in the attended condition but also in the unattended condition, and that attention could modulate the distribution of cortical networks related to semantic integration. We suggest that semantic integration with attention is a conscious process and needs a wide cortical network working together, in which the ATL plays the role of a central hub; in contrast, semantic integration without attention is a pre-attentive process and involves a relatively smaller cortical network, in which the HG may play an important role. Our study will provide valuable insights into semantic integration and will be useful for investigations on multisensory integration and attention mechanism at multiple processing stages and levels within the cortical hierarchy.


SOD3 overexpression alleviates cerebral ischemia-reperfusion injury in rats.

  • Shuaiqi Sun‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2019‎

Ischemic stroke is a deadly disease that poses a serious threat to human life. Superoxide dismutase 3 (SOD3, ECSOD) is the main antioxidant enzyme that removes superoxide anions from cells. This study aimed to investigate the effect of SOD3 overexpression on cerebral ischemia-reperfusion injury in rats.


Identifying candidate genes associated with sperm morphology abnormalities using weighted single-step GWAS in a Duroc boar population.

  • Yunxiang Zhao‎ et al.
  • Theriogenology‎
  • 2020‎

Artificial insemination (AI) has been used as a routine technology globally in the pig production industry since 1930. One of the preferable advantages of AI technology is that the semen of elite boars can be disseminated to the commercial sow population rapidly. Understanding the genetic background of semen traits may help in developing genetic improvement programs of boars by including these traits into the selection index. In this study, we utilized weighted single-step genome-wide association study (wssGWAS) to identify genetic regions and further candidate genes associated with sperm morphology abnormalities (proximal droplet, distal droplet, bent tail, coiled tail, and distal midpiece reflex) in a Duroc boar population. Several genomic regions explained 2.76%-9.22% of the genetic variances for sperm morphology abnormalities were identified. The first three detected QTL regions together explained about 7.65%-25.10% of the total genetic variances of the studied traits. Several genes were detected and considered as candidate genes for each of the traits under study: coiled tail, HOOK1, ARSA, SYCE3, SOD3, GMNN, RBPJ, STIL, and FGF1; bent tail, FGF1, ADIPOR1, ARPC5, FGFR3, PANX1, IZUMO1R, ANKRD49, and GAL; proximal droplet, NSF, WNT3, WNT9B, LYZL6, FGFR1OP, RNASET2, FYN, LRRC6, EPC1, DICER1, FNDC3A, and PFN1; distal droplet, ARSA, SYCE3, MOV10L1, CBR1, KDM6B, TP53, PTBP2, UBR7, KIF18A, ADAM15, FAAH, TEKT3, and SRD5A1; and distal midpiece reflex, OMA1, PFN1, PELP1, BMP2, GPR18, TM9SF2, and SPIN1. GO and KEGG enrichment analysis revealed the potential function of the identified candidate genes in spermatogenesis, testis functioning, and boar spermatozoa plasma membrane activating and maintenance. In conclusion, we detected candidate genes associated with the coiled tail, bent tail, proximal droplet, distal droplet, and distal midpiece reflex in a Duroc boar population using wssGWAS. Overall, these novel results reflect the polygenic genetic architecture of the studied sperm morphology abnormality traits, which may provide knowledge for conducting genomic selection on these traits. The detected genetic regions can be used in developing trait-specific marker assisted selection models by assigning higher genetic variances to these regions.


Strategies for Obtaining and Pruning Imputed Whole-Genome Sequence Data for Genomic Prediction.

  • Shaopan Ye‎ et al.
  • Frontiers in genetics‎
  • 2019‎

Genomic prediction with imputed whole-genome sequencing (WGS) data is an attractive approach to improve predictive ability with low cost. However, high accuracy has not been realized using this method in livestock. In this study, we imputed 435 individuals from 600K single nucleotide polymorphism (SNP) chip data to WGS data using different reference panels. We also investigated the prediction accuracy of genomic best linear unbiased prediction (GBLUP) using imputed WGS data from different reference panels, linkage disequilibrium (LD)-based marker pruning, and pre-selected variants based on Genome-wide association society (GWAS) results. Results showed that the imputation accuracies from 600K to WGS data were 0.873 ± 0.038, 0.906 ± 0.036, and 0.979 ± 0.010 for the internal, external, and combined reference panels, respectively. In most traits of chickens, the prediction accuracy of imputed WGS data obtained from the internal reference panel was greater than or equal to that of the combined reference panel; the external reference panel had the lowest prediction accuracy. Compared with 600K chip data, GBLUP with imputed WGS data had only a small increase (1-3%) in prediction accuracy. Using only variants selected from imputed WGS data based on GWAS results resulted in almost no increase for most traits and even increased the bias of the regression coefficient. The impact of the degree of LD of selected and remaining variants on prediction accuracy was different. For average daily gain (ADG), residual feed intake (RFI), intestine length (IL), and body weight in 91 days (BW91), the accuracy of GBLUP increased as the degree of LD of selected variants decreased, but the opposite relationship occurred for the remaining variants. But for breast muscle weight (BMW) and average daily feed intake (ADFI), the accuracy of GBLUP increased as the degree of LD of selected variants increased, and the degree of LD of remaining variants had a small effect on prediction accuracy. Overall, the optimal imputation strategy to obtain WGS data for genomic prediction should consider the relationship between selected individuals and target population individuals to avoid heterogeneity of imputation. LD-based marker pruning can be used to improve the accuracy of genomic prediction using imputed WGS data.


Mitochondrial translocation of cofilin is required for allyl isothiocyanate-mediated cell death via ROCK1/PTEN/PI3K signaling pathway.

  • Guo-bing Li‎ et al.
  • Cell communication and signaling : CCS‎
  • 2013‎

Cofilin is a member of the actin depolymerizing factor (ADF)/cofilin family, which regulates actin dynamics. Increasing evidence suggests that mitochondrial translocation of cofilin appears necessary for the regulation of apoptosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: