Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 252 papers

Genome-Wide Identification and Characterization of the LRR-RLK Gene Family in Two Vernicia Species.

  • Huiping Zhu‎ et al.
  • International journal of genomics‎
  • 2015‎

Leucine-rich repeat receptor-like kinases (LRR-RLKs) make up the largest group of RLKs in plants and play important roles in many key biological processes such as pathogen response and signal transduction. To date, most studies on LRR-RLKs have been conducted on model plants. Here, we identified 236 and 230 LRR-RLKs in two industrial oil-producing trees: Vernicia fordii and Vernicia montana, respectively. Sequence alignment analyses showed that the homology of the RLK domain (23.81%) was greater than that of the LRR domain (9.51%) among the Vf/VmLRR-RLKs. The conserved motif of the LRR domain in Vf/VmLRR-RLKs matched well the known plant LRR consensus sequence but differed at the third last amino acid (W or L). Phylogenetic analysis revealed that Vf/VmLRR-RLKs were grouped into 16 subclades. We characterized the expression profiles of Vf/VmLRR-RLKs in various tissue types including root, leaf, petal, and kernel. Further investigation revealed that Vf/VmLRR-RLK orthologous genes mainly showed similar expression patterns in response to tree wilt disease, except 4 pairs of Vf/VmLRR-RLKs that showed opposite expression trends. These results represent an extensive evaluation of LRR-RLKs in two industrial oil trees and will be useful for further functional studies on these proteins.


Digital Gene Expression Profiling to Explore Differentially Expressed Genes Associated with Terpenoid Biosynthesis during Fruit Development in Litsea cubeba.

  • Ming Gao‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2016‎

Mountain pepper (Litseacubeba (Lour.) Pers.) (Lauraceae) is an important industrial crop as an ingredient in cosmetics, pesticides, food additives and potential biofuels. These properties are attributed to monoterpenes and sesquiterpenes. However, there is still no integrated model describing differentially expressed genes (DEGs) involved in terpenoid biosynthesis during the fruit development of L. cubeba. Here, we performed digital gene expression (DGE) using the Illumina NGS platform to evaluated changes in gene expression during fruit development in L. cubeba. DGE generated expression data for approximately 19354 genes. Fruit at 60 days after flowering (DAF) served as the control, and a total of 415, 1255, 449 and 811 up-regulated genes and 505, 1351, 1823 and 1850 down-regulated genes were identified at 75, 90, 105 and 135 DAF, respectively. Pathway analysis revealed 26 genes involved in terpenoid biosynthesis pathways. Three DEGs had continued increasing or declining trends during the fruit development. The quantitative real-time PCR (qRT-PCR) results of five differentially expressed genes were consistent with those obtained from Illumina sequencing. These results provide a comprehensive molecular biology background for research on fruit development, and information that should aid in metabolic engineering to increase the yields of L. cubeba essential oil.


Prediction of survival prognosis of non-small cell lung cancer by APE1 through regulation of Epithelial-Mesenchymal Transition.

  • Xi Wei‎ et al.
  • Oncotarget‎
  • 2016‎

The DNA base excision repair gene APE1 involves in DNA damage repair pathway and overexpression in a variety of human cancers. Analyses of patients with non-small cell lung cancer (NSCLC) suggested that multiple factors associated with prognosis of NSCLC patients. Further investigation showed that APE1 expression was able to predict the progression-free survival and overall survival in patients with NSCLC and correlated with lymph node metastasis. Intriguingly, as a stratification of APE1-141 SNPs in APE1 positive expression, we also found APE1-141 GT/GG was identified as a marker for prediction of poor survival in NSCLC patients. In the in vitro experiments, the results showed that when APE1 expression was inhibited by siRNA or AT101 (an APE1 inhibitor), the migration and invasion of NSCLC cells were suppressed. Furthermore, Epithelial-Mesenchymal Transition (EMT) markers was tested to provide evidence that APE1 promoted NSCLC EMT through interaction with SirT1. Using NSCLC xenograft models, we confirmed that AT101 shrank tumor volumes and inhibited lymph node metastasis. In conclusion, APE1 could be a potential target for patients with NSCLC metastasis and AT101 is a potent inhibitor in further treatment of NSCLC patients.


Tang-Nai-Kang alleviates pre-diabetes and metabolic disorders and induces a gene expression switch toward fatty acid oxidation in SHR.Cg-Leprcp/NDmcr rats.

  • Linyi Li‎ et al.
  • PloS one‎
  • 2015‎

Increased energy intake and reduced physical activity can lead to obesity, diabetes and metabolic syndrome. Transcriptional modulation of metabolic networks has become a focus of current drug discovery research into the prevention and treatment of metabolic disorders associated with energy surplus and obesity. Tang-Nai-Kang (TNK), a mixture of five herbal plant extracts, has been shown to improve abnormal glucose metabolism in patients with pre-diabetes. Here, we report the metabolic phenotype of SHR.Cg-Leprcp/NDmcr (SHR/cp) rats treated with TNK. Pre-diabetic SHR/cp rats were randomly divided into control, TNK low-dose (1.67 g/kg) and TNK high-dose (3.24 g/kg) groups. After high-dose treatment for 2 weeks, the serum triglycerides and free fatty acids in SHR/cp rats were markedly reduced compared to controls. After 3 weeks of administration, the high dose of TNK significantly reduced the body weight and fat mass of SHR/cp rats without affecting food consumption. Serum fasting glucose and insulin levels in the TNK-treated groups decreased after 6 weeks of treatment. Furthermore, TNK-treated rats exhibited obvious improvements in glucose intolerance and insulin resistance. The improved glucose metabolism may be caused by the substantial reduction in serum lipids and body weight observed in SHR/cp rats starting at 3 weeks of TNK treatment. The mRNA expression of NAD+-dependent deacetylase sirtuin 1 (SIRT1) and genes related to fatty acid oxidation was markedly up-regulated in the muscle, liver and adipose tissue after TNK treatment. Furthermore, TNK promoted the deacetylation of two well-established SIRT1 targets, PPARγ coactivator 1α (PGC1α) and forkhead transcription factor 1 (FOXO1), and induced the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in different tissues. These observations suggested that TNK may be an alternative treatment for pre-diabetes and metabolic syndrome by inducing a gene expression switch toward fat oxidation through the activation of SIRT1 and AMPK signaling.


Effect of fermentation stillage of food waste on bioelectricity production and microbial community structure in microbial fuel cells.

  • Hongzhi Ma‎ et al.
  • Royal Society open science‎
  • 2018‎

A single-chamber microbial fuel cell (MFC) was used in this study to treat recycled stillage obtained from food waste ethanol fermentation. Corresponding substrates inside the system were evaluated by fluorescence spectra, and microbial communities were also investigated. Results demonstrated that output voltage and current, respectively, reached 0.29 V and 1.4 mA with an external resistance of 200 Ω. Corresponding total organic carbon and chemical oxygen demand removal efficiency reached more than 50% and 70%, respectively. Results of fluorescence spectra demonstrated that tryptophan-like aromatic, soluble microbial by-product-like and humic acid-like substances accumulated and were not easily degraded. Microbial community analysis by high-throughput sequence indicated that Advenella and Moheibacter occupied the highest proportion among all genera at the anode instead of Geobacter. These results may be due to complicated accumulated stillage, and potential tetracyclines possibly influenced microbial communities. Details on how stillage affects MFC operation should be further studied, and a solution on relieving effects should be established.


Long non-coding RNA MT1DP shunts the cellular defense to cytotoxicity through crosstalk with MT1H and RhoC in cadmium stress.

  • Ming Gao‎ et al.
  • Cell discovery‎
  • 2018‎

Metallothioneins (MTs) are known to protect cells against oxidative stress, especially providing protection against cadmium (Cd) toxicity in hepatocytes. There are various gene variants and pseudogenes for MTs; however, there is little understanding on the functions of those non-coding MT members that are known to be expressed as long non-coding RNAs (lncRNAs) nowadays. Different from most protein-coding MT members, MT1DP was here found that remarkably induced to provoke cytotoxicity in hepatocytes in response to Cd treatment. MT1DP exerted such a pro-apoptotic function in Cd-treated hepatocytes through interacting with two partners: RhoC and MT1H. On one hand, MT1DP interacted with RhoC protein to increase the latter's stability by preventing lysosome-dependent protein degradation. Therefore, upon Cd stress, MT1DP/RhoC complex was quickly reinforced to activate RhoC-CCN1/2-AKT signaling and potentiate Ca2+ influx, leading to enhanced Cd uptake and elevated Cd toxicity. On the other hand, MT1H, a protein-coding member of the MT family with little known function, was found to quickly respond to Cd exposure along with MT1DP. Mechanistically, MT1H and MT1DP were uncovered to mutually protect each other through a reciprocal ceRNA mechanism, building up a positive feedback loop to enforce MT1DP-conducted signaling upon Cd exposure. Moreover, MT1DP was found to contribute much more to the activation of RhoC-CCN1/2-AKT signaling than MT1H. Considered together, we here unveiled a mystery whether a pseudogene within the MT family, MT1DP, has actual biological functions in regulating Cd-induced cellular defense. Our findings unearthed an important role of pseudogene MT1DP in calibrating the cellular machinery to switch the cellular defense to cytotoxicity through crosslinking an interplay between its two partners, namely MT1H and RhoC, under cadmium stress.


Hepassocin activates the EGFR/ERK cascade and induces proliferation of L02 cells through the Src-dependent pathway.

  • Ming Gao‎ et al.
  • Cellular signalling‎
  • 2014‎

Hepassocin (HPS) is a secreted protein with mitogenic activity on primary hepatocytes and protects hepatocytes from chemically-induced injury. Our previous studies showed that HPS stimulates proliferation of hepatocytes in an ERK pathway-dependent manner. However, the molecular mechanism of HPS-induced activation of the ERK pathway remains unclear. In this study, we found that HPS induced the phosphorylation of the epidermal growth factor receptor (EGFR) in the human L02 hepatocyte cell line, and this event was concomitant with the activation of the non-receptor tyrosine kinase Src. Specific inhibition of EGFR kinase activity by gefitinib or down-regulation of EGFR by specific EGFR siRNAs prevented HPS-induced activation of the ERK pathway and proliferation of L02 cells. Furthermore, inhibition of Src activity significantly blocked HPS-induced activation of the EGFR, which was suggestive of a ligand-independent transactivation mechanism of EGFR itself as well as ERK phosphorylation and proliferation of L02 cells. These results indicate that EGFR plays an important role in the mitogenic signaling induced by HPS in L02 cell lines and may further stimulate research on the role of HPS in hepatocytes within biological processes in human health and disease.


Analysis of the leaf methylomes of parents and their hybrids provides new insight into hybrid vigor in Populus deltoides.

  • Ming Gao‎ et al.
  • BMC genetics‎
  • 2014‎

Plants with heterosis/hybrid vigor perform better than their parents in many traits. However, the biological mechanisms underlying heterosis remain unclear. To investigate the significance of DNA methylation to heterosis, a comprehensive analysis of whole-genome DNA methylome profiles of Populus deltoides cl.'55/65' and '10/17' parental lines and their intraspecific F1 hybrids lines was performed using methylated DNA immunoprecipitation (MeDIP) and high-throughput sequencing.


Analysis of Microarray Data on Gene Expression and Methylation to Identify Long Non-coding RNAs in Non-small Cell Lung Cancer.

  • Nannan Feng‎ et al.
  • Scientific reports‎
  • 2016‎

To identify what long non-coding RNAs (lncRNAs) are involved in non-small cell lung cancer (NSCLC), we analyzed microarray data on gene expression and methylation. Gene expression chip and HumanMethylation450BeadChip were used to interrogate genome-wide expression and methylation in tumor samples. Differential expression and methylation were analyzed through comparing tumors with adjacent non-tumor tissues. LncRNAs expressed differentially and correlated with coding genes and DNA methylation were validated in additional tumor samples using RT-qPCR and pyrosequencing. In vitro experiments were performed to evaluate lncRNA's effects on tumor cells. We identified 8,500 lncRNAs expressed differentially between tumor and non-tumor tissues, of which 1,504 were correlated with mRNA expression. Two of the lncRNAs, LOC146880 and ENST00000439577, were positively correlated with expression of two cancer-related genes, KPNA2 and RCC2, respectively. High expression of LOC146880 and ENST00000439577 were also associated with poor survival. Analysis of lncRNA expression in relation to DNA methylation showed that LOC146880 expression was down-regulated by DNA methylation in its promoter. Lowering the expression of LOC146880 or ENST00000439577 in tumor cells could inhibit cell proliferation, invasion and migration. Analysis of microarray data on gene expression and methylation allows us to identify two lncRNAs, LOC146880 and ENST00000439577, which may promote the progression of NSCLC.


Cholesterol Retards Senescence in Bone Marrow Mesenchymal Stem Cells by Modulating Autophagy and ROS/p53/p21Cip1/Waf1 Pathway.

  • Mingyu Zhang‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2016‎

In the present study, we demonstrated that bone marrow mesenchymal stem cells (BMSCs) of the 3rd passage displayed the senescence-associated phenotypes characterized with increased activity of SA-β-gal, altered autophagy, and increased G1 cell cycle arrest, ROS production, and expression of p53 and p21Cip1/Waf1 compared with BMSCs of the 1st passage. Cholesterol (CH) reduced the number of SA-β-gal positive cells in a dose-dependent manner in aging BMSCs induced by H2O2 and the 3rd passage BMSCs. Moreover, CH inhibited the production of ROS and expression of p53 and p21Cip1/Waf1 in both cellular senescence models and decreased the percentage of BMSCs in G1 cell cycle in the 3rd passage BMSCs. CH prevented the increase in SA-β-gal positive cells induced by RITA (reactivation of p53 and induction of tumor cell apoptosis, a p53 activator) or 3-MA (3-methyladenine, an autophagy inhibitor). Our results indicate that CH not only is a structural component of cell membrane but also functionally contributes to regulating cellular senescence by modulating cell cycle, autophagy, and the ROS/p53/p21Cip1/Waf1 signaling pathway.


Microstructure and Mechanical Properties of Narrow Gap Laser-Arc Hybrid Welded 40 mm Thick Mild Steel.

  • Chen Zhang‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2017‎

Both laser-arc hybrid welding and narrow gap welding have potential for the fabrication of thick sections, but their combination has been seldom studied. In this research, 40 mm thick mild steel was welded by narrow gap laser-arc hybrid welding. A weld with smooth layer transition, free of visible defects, was obtained by nine passes at a 6 mm width narrow gap. The lower part of the weld has the lowest mechanical properties because of the lowest amount of acicular ferrite, but its ultimate tensile strength and impact absorbing energy is still 49% and 60% higher than those of base metal, respectively. The microhardness deviation of all filler layers along weld thickness direction is no more than 15 HV0.2, indicating that no temper softening appeared during multiple heat cycles. The results provide an alternative technique for improving the efficiency and quality of welding thick sections.


Scavenger receptor A (SR-A) is required for LPS-induced TLR4 mediated NF-κB activation in macrophages.

  • Honghui Yu‎ et al.
  • Biochimica et biophysica acta‎
  • 2012‎

Recent evidence suggests that the macrophage scavenger receptor class A (SR-A, aka, CD204) plays a role in the induction of innate immune and inflammatory responses. We investigated whether SR-A will cooperate with Toll-like receptors (TLRs) in response to TLR ligand stimulation. Macrophages (J774/a) were treated with Pam2CSK4, (TLR2 ligand), Polyinosinic:polycytidylic acid (Poly I:C) (TLR3 ligand), and Lipopolysaccharides (LPS) (TLR4 ligand) for 15 min in the presence or absence of fucoidan (the SR-A ligand). The levels of phosphorylated IκBα (p-IκBα) were examined by Western blot. We observed that Poly I:C and LPS alone, but not Pam2CSK4 or fucoidan increased the levels of p-IκBα. However, LPS-induced increases in p-IκBα levels were further enhanced when presence of the fucoidan. Immunoprecipitation and double fluorescent staining showed that LPS stimulation promotes SR-A association with TLR4 in the presence of fucoidan. To further confirm our observation, we isolated peritoneal macrophages from SR-A deficient (SR-A(-/-)), TLR4(-/-) and wild type (WT) mice, respectively. The peritoneal macrophages were treated with LPS for 15min in the presence and absence of fucoidan. We observed that LPS-stimulated TNFα and IL-1β production was further enhanced in the WT macrophages, but did not in either TLR4(-/-) or SR-A(-/-) macrophages, when fucoidan was present. Similarly, in the presence of fucoidan, LPS-induced IκBα phosphorylation, NF-κB binding activity, and association between TLR4 and SR-A were significantly enhanced in WT macrophages compared with LPS stimulation alone. The data suggests that SR-A is needed for LPS-induced inflammatory responses in macrophages.


Beneficial effect of Sparassis crispa on stroke through activation of Akt/eNOS pathway in brain of SHRSP.

  • Hisae Yoshitomi‎ et al.
  • Journal of natural medicines‎
  • 2011‎

Sparassis crispa (S. crispa) is a mushroom used as a natural medicine that recently became cultivatable in Japan. In this study, we investigated not only the preventive effects of S. crispa against stroke and hypertension in stroke-prone spontaneously hypertensive rats (SHRSP) but also the mechanism involved by using studies of the cerebral cortex at a young age. Six-week-old male SHRSP were divided into 2 groups, a control group and an S. crispa group administered 1.5% S. crispa in feed, and we then observed their survival. In addition, rats of the same age were treated with 1.5% S. crispa for 4 weeks and we measured body weight, blood pressure, blood flow from the tail, NO(x) production, and the levels of expression of several proteins in the cerebral cortex by western blot analysis. Our results showed that the S. crispa group had a delayed incidence of stroke and death and significantly decreased blood pressure and increased blood flow after the administration. Moreover, the quantity of urinary excretion and the nitrate/nitrite concentration in cerebral tissue were higher than those of control SHRSP rats. In the cerebral cortex, phosphor-eNOS (Ser1177) and phosphor-Akt (Ser473) in S. crispa-treated SHRSP were increased compared with those of control SHRSP rats. In conclusion, S. crispa could ameliorate cerebrovascular endothelial dysfunction by promoting recovery of Akt-dependent eNOS phosphorylation and increasing NO production in the cerebral cortex. S. crispa may be useful for preventing stroke and hypertension.


Anti-angiogenesis effect of essential oil from Curcuma zedoaria in vitro and in vivo.

  • Wenxing Chen‎ et al.
  • Journal of ethnopharmacology‎
  • 2011‎

Curcuma zedoaria (Berg.) Rosc., a traditional Chinese herb, was used widely but absolutely prohibited for the pregnant in clinic. Based on that there is abundant angiogenesis in endometrium and placenta during gestation period, we hypothesized that some components from it could inhibit angiogenesis and then damaged the supply of oxygen and nutrition to the embryo, which finally led to gestation failure.


Protective Effects of Genistein against Mono-(2-ethylhexyl) Phthalate-Induced Oxidative Damage in Prepubertal Sertoli Cells.

  • Liandong Zhang‎ et al.
  • BioMed research international‎
  • 2017‎

Mono-(2-ethylhexyl) phthalate (MEHP) and genistein are two of the most prevalent endocrine-disrupting chemicals (EDCs) that present in the environment and food. However, how these two EDCs would affect prepubertal Sertoli cells development was rarely studied. In this study, primary prepubertal Sertoli cells were isolated from 22-day-old Sprague Dawley rats and exposed to MEHP at 1 μmol/L, 10 μmol/L, and 100 μmol/L (M1, M10, and M100), genistein at 10 μmol/L (G), and their combination (G + M1, G + M10, and G + M100). Cell proliferation inhibition rate, apoptosis and necrosis rate, and cellular redox state were evaluated. Our results revealed that MEHP could significantly increase cell proliferation inhibition rate, apoptosis rate, necrosis rate, and intracellular reactive oxidative species level. However, coadministration of genistein could partially alleviate MEHP-induced prepubertal Sertoli cells oxidative injuries via enhancement of testicular antioxidative enzymes activities and upregulation of Nrf2 and HO-1, indicating that genistein could partially attenuate MEHP-induced prepubertal Sertoli cells damage through antioxidative action and may have promising future on its curative role for attenuating other EDCs-induced reproductive disorders.


Promoter methylation of Wnt/β-Catenin signal inhibitor TMEM88 is associated with unfavorable prognosis of non-small cell lung cancer.

  • Rongna Ma‎ et al.
  • Cancer biology & medicine‎
  • 2017‎

Objective: Recent research has indicated that altered promoter methylation of oncogenes and tumor suppressor genes is an important mechanism in lung cancer development and progression. In this study, we investigated the association between promoter methylation of TMEM88, a possible inhibitor of the Wnt/β-Catenin signaling, and the survival of patients with non-small cell lung cancer (NSCLC). Methods: Twelve pairs of tumor and adjacent non-tumor samples were used for microarray analyses of DNA methylation and gene expression. For validation, more than two hundred additional samples were analyzed for methylation using bisulfite pyrosequencing and for gene expression using qRT-PCR. Then the cell function were tested by wound healing, transwell, CCK8 and cell cycle assay. Results: Our analysis of patient specimens showed that TMEM88 methylation was higher in NSCLC tumors (82.2% ± 10.3, P < 0.01) compared with the adjacent normal tissues (65.9% ± 7.2). The survival analysis revealed that patients with high TMEM88 methylation had a shorter overall survival (46 months) compared with patients with low TMEM88 methylation (>56 months;P=0.021). In addition, we found that demethylation treatment could inhibit tumor cell proliferation, migration, and invasion, which was supportive of an association between methylation and survival. Conclusions: Based on these consistent observations, we concluded that TMEM88 may play an important role in NSCLC progression and that promoter methylation of TMEM88 may serve as a biomarker for NSCLC prognosis and treatment.


Genistein attenuates di‑(2‑ethylhexyl) phthalate-induced testicular injuries via activation of Nrf2/HO‑1 following prepubertal exposure.

  • Liandong Zhang‎ et al.
  • International journal of molecular medicine‎
  • 2018‎

Di‑(2‑ethylhexyl) phthalate (DEHP) and genistein (GEN) are of the most common endocrine disrupting chemicals (EDCs) present in the environment or the diet. However, investigation of the effects of acute exposure to these two EDCs during prepuberty has been lacking. In this study, DEHP and GEN were administrated to prepubertal male Sprague‑Dawley rats by gavage from PND22 to PND35 with vehicle control, GEN 50 mg/kg body weight (bw)/day, DEHP50, 150 and 450 mg/kg bw/day, and combined treatment. Reproductive parameters including testis weight, anogenital distance and organ coefficient were evaluated on PND36. Enzyme activity involved in the regulation of testicular redox state as well as expression of genes and proteins related to anti-oxidative ability and apoptosis were also investigated. The results revealed that by PND36, DEHP treatment had significantly decreased the testis weight, organ coefficient, testicular anti-oxidative enzyme activities and caused tubular vacuolation; however, co‑administration of GEN partially alleviated DEHP‑induced testicular injuries and enhanced testicular anti‑oxidative enzyme activities and upregulated the expression of NF‑E2 related factor 2 and heme oxygenase‑1, which indicated that GEN partially attenuated DEHP‑induced male reproductive system damage through anti‑oxidative action following acute prepubertal exposure to DEHP. Thus, GEN may have use in attenuating the damaging effects of other EDCs that lead to reproductive disorders.


MIAT Is a Pro-fibrotic Long Non-coding RNA Governing Cardiac Fibrosis in Post-infarct Myocardium.

  • Xuefeng Qu‎ et al.
  • Scientific reports‎
  • 2017‎

A long non-coding RNA (lncRNA), named myocardial infarction associated transcript (MIAT), has been documented to confer risk of myocardial infarction (MI). The aim of this study is to elucidate the pathophysiological role of MIAT in regulation of cardiac fibrosis. In a mouse model of MI, we found that MIAT was remarkably up-regulated, which was accompanied by cardiac interstitial fibrosis. MIAT up-regulation in MI was accompanied by deregulation of some fibrosis-related regulators: down-regulation of miR-24 and up-regulation of Furin and TGF-β1. Most notably, knockdown of endogenous MIAT by its siRNA reduced cardiac fibrosis and improved cardiac function and restored the deregulated expression of the fibrosis-related regulators. In cardiac fibroblasts treated with serum or angiotensin II, similar up-regulation of MIAT and down-regulation of miR-24 were consistently observed. These changes promoted fibroblasts proliferation and collagen accumulation, whereas knockdown of MIAT by siRNA or overexpression of miR-24 with its mimic abrogated the fibrogenesis. Our study therefore has identified MIAT as the first pro-fibrotic lncRNA in heart and unraveled the role of MIAT in the pathogenesis of MI. These findings also promise that normalization of MIAT level may prove to be a therapeutic option for the treatment of MI-induced cardiac fibrosis and the associated cardiac dysfunction.


Comparisons of Chemical Profiles and Gastroprotective Effects of Citri Sarcodactylis Fructus Pre- and Poststeam Processing.

  • Yinji Zhu‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2020‎

Citri Sarcodactylis Fructus (CSF) is widely used as folk medicine in traditional Chinese medicine (TCM). The dried and steam-processed CSF (SCSF) has been employed for harmonizing the stomach over thousands of years under the guidelines of TCM theory. However, little is known about the differences in chemical compositions between CSF and SCSF. Moreover, the gastroprotective effects of CSF and SCSF on ethanol-induced gastric mucosal injuries in rats have yet to be investigated. Consequently, the present study aimed to investigate the chemical differences and gastroprotective effects of CSF and SCSF, providing some experimental framework for the development of CSF and SCSF.


Rapid Computer-Aided Diagnosis of Stroke by Serum Metabolic Fingerprint Based Multi-Modal Recognition.

  • Wei Xu‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2020‎

Stroke is a leading cause of mortality and disability worldwide, expected to result in 61 million disability-adjusted life-years in 2020. Rapid diagnostics is the core of stroke management for early prevention and medical treatment. Serum metabolic fingerprints (SMFs) reflect underlying disease progression, predictive of patient phenotypes. Deep learning (DL) encoding SMFs with clinical indexes outperforms single biomarkers, while posing challenges with poor prediction to interpret by feature selection. Herein, rapid computer-aided diagnosis of stroke is performed using SMF based multi-modal recognition by DL, to combine adaptive machine learning with a novel feature selection approach. SMFs are extracted by nano-assisted laser desorption/ionization mass spectrometry (LDI MS), consuming 100 nL of serum in seconds. A multi-modal recognition is constructed by integrating SMFs and clinical indexes with an enhanced area under curve (AUC) up to 0.845 for stroke screening, compared to single-modal diagnosis by only SMFs or clinical indexes. The prediction of DL is addressed by selecting 20 key metabolite features with differential regulation through a saliency map approach, shedding light on the molecular mechanisms in stroke. The approach highlights the emerging role of DL in precision medicine and suggests an expanding utility for computational analysis of SMFs in stroke screening.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: