Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Effect of fermentation stillage of food waste on bioelectricity production and microbial community structure in microbial fuel cells.

Royal Society open science | 2018

A single-chamber microbial fuel cell (MFC) was used in this study to treat recycled stillage obtained from food waste ethanol fermentation. Corresponding substrates inside the system were evaluated by fluorescence spectra, and microbial communities were also investigated. Results demonstrated that output voltage and current, respectively, reached 0.29 V and 1.4 mA with an external resistance of 200 Ω. Corresponding total organic carbon and chemical oxygen demand removal efficiency reached more than 50% and 70%, respectively. Results of fluorescence spectra demonstrated that tryptophan-like aromatic, soluble microbial by-product-like and humic acid-like substances accumulated and were not easily degraded. Microbial community analysis by high-throughput sequence indicated that Advenella and Moheibacter occupied the highest proportion among all genera at the anode instead of Geobacter. These results may be due to complicated accumulated stillage, and potential tetracyclines possibly influenced microbial communities. Details on how stillage affects MFC operation should be further studied, and a solution on relieving effects should be established.

Pubmed ID: 30839675 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


UPARSE (tool)

RRID:SCR_005020

An Operational Taxonomic Unit (OTU) clustering software for 16S and other marker genes. Highly accurate OTU sequences and improved diversity measures.

View all literature mentions

Ribosomal Database Project (tool)

RRID:SCR_006633

A database which provides ribosome related data services to the scientific community, including online data analysis, rRNA derived phylogenetic trees, and aligned and annotated rRNA sequences. It specifically contains information on quality-controlled, aligned and annotated bacterial and archaean 16S rRNA sequences, fungal 28S rRNA sequences, and a suite of analysis tools for the scientific community. Most of the RDP tools are now available as open source packages for users to incorporate in their local workflow.

View all literature mentions