2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Exploration of the Transcriptional Landscape of ALPPS Reveals the Pathways of Accelerated Liver Regeneration.

  • Pieter Borger‎ et al.
  • Frontiers in oncology‎
  • 2019‎

Background and Aims: ALPPS (associating liver partition and portal vein ligation for staged hepatectomy), a novel 2-staged hepatectomy, dramatically accelerates liver regeneration and thus enables extensive liver tumor resection. The signaling networks underlying the ALPPS-induced accelerated regeneration process are largely unknown. Methods: We performed transcriptome profiling (TP) of liver tissue obtained from a mouse model of ALPPS, standard hepatectomy (68% model), and additional control surgeries (sham, PVL and Tx). We also performed TP using human liver biopsies (n = 5) taken from the occluded lobe and the future liver remnant (FLR) during the first step of ALPPS surgery (4-5 h apart). We used Oncofinder computational tools, which covers 378 ISPs, for unsupervised, unbiased quantification of ISP activity. Results: Gene expression cluster analysis revealed an ALPPS specific signature: the IGF1R Signaling Pathway (Cell survival), the ILK Pathway (Induced cell proliferation), and the IL-10 Pathway (Stability determination) were significantly enriched, whereas the activity of the Interferon Pathway (Transcription) was reduced (p < 0.05). Further, the PAK- and ILK-associated ISPs were activated at an earlier time point, reflecting significant acceleration of liver regeneration (p < 0.001). These pathways, which were also recovered in human liver biopsies, control cell growth and proliferation, inflammatory response, and hypoxia-related processes. Conclusions: ALPPS is not a straightforward addition of portal vein ligation (PVL) plus transection-it is more. The early stages of normal and accelerated liver regeneration are clearly discernible by a significantly increased and earlier activation of a small number of signaling pathways. Compounds mimicking these responses may help to improve the ALPPS method and further reduce the hospitalization time of the patient.


Brown fat does not cause cachexia in cancer patients: A large retrospective longitudinal FDG-PET/CT cohort study.

  • Anton S Becker‎ et al.
  • PloS one‎
  • 2020‎

Brown adipose tissue (BAT) is a specialized form of adipose tissue, able to increase energy expenditure by heat generation in response to various stimuli. Recently, its pathological activation has been implicated in the pathogenesis of cancer cachexia. To establish a causal relationship, we retrospectively investigated the longitudinal changes in BAT and cancer in a large FDG-PET/CT cohort.


A Dual Role of Caspase-8 in Triggering and Sensing Proliferation-Associated DNA Damage, a Key Determinant of Liver Cancer Development.

  • Yannick Boege‎ et al.
  • Cancer cell‎
  • 2017‎

Concomitant hepatocyte apoptosis and regeneration is a hallmark of chronic liver diseases (CLDs) predisposing to hepatocellular carcinoma (HCC). Here, we mechanistically link caspase-8-dependent apoptosis to HCC development via proliferation- and replication-associated DNA damage. Proliferation-associated replication stress, DNA damage, and genetic instability are detectable in CLDs before any neoplastic changes occur. Accumulated levels of hepatocyte apoptosis determine and predict subsequent hepatocarcinogenesis. Proliferation-associated DNA damage is sensed by a complex comprising caspase-8, FADD, c-FLIP, and a kinase-dependent function of RIPK1. This platform requires a non-apoptotic function of caspase-8, but no caspase-3 or caspase-8 cleavage. It may represent a DNA damage-sensing mechanism in hepatocytes that can act via JNK and subsequent phosphorylation of the histone variant H2AX.


Large-Scale Profiling of Signaling Pathways Reveals a Distinct Demarcation between Normal and Extended Liver Resection.

  • Pieter Borger‎ et al.
  • Cells‎
  • 2020‎

Despite numerous studies addressing normal liver regeneration, we still lack comprehensive understanding of the biological processes underlying failed liver regeneration. Therefore, we analyzed the activity of 271 intracellular signaling pathways (ISPs) by genome wide profiling of differentially expressed RNAs in murine liver tissue biopsies after normal hepatectomy (nHx; 68% of liver removed) and extended hepatectomy (eHx; 86% of liver removed). Comprehensive, genome-wide transcriptome profiling using RNAseq was performed in liver tissue obtained from mice (sham, nHx, and eHx) harvested 1, 8, 16, 32, and 48 h after operation (n = 3 per group) and the OncoFinder toolkit was used for an unsupervised, unbiased identification of intracellular signaling pathways (ISP) activity. We observed that the normal regenerative process requires a transient activation and silencing of approximately two dozen of ISPs. After nHx, the Akt Pathway represented with 13 branches, the Chromatin Pathway and the DDR Pathways dominated. After eHx, the ATM main pathway and two of its branches (Cell Survival; G2_M Checkpoint Arrest) dominated, as well as the Hypoxia Pathways. Further, 14 ISPs demonstrated a strong inverse regulation, with the Hedgehog and the Brca1 Main Pathways as chief activators after nHx, and the ATM Pathway (G2_M Checkpoint Arrest) as the dominating constraining response after eHx.


Yes-associated protein promotes early hepatocyte cell cycle progression in regenerating liver after tissue loss.

  • Christoph Tschuor‎ et al.
  • FASEB bioAdvances‎
  • 2019‎

The ability of the liver to restore its original volume following tissue loss has been associated with the Hippo-YAP1 pathway, a key controller of organ size. Yes-associated protein 1 (YAP1)-a growth effector usually restrained by Hippo signaling-is believed to be of particular importance; however, its role in liver regeneration remains ill-defined. To explore its function, we knocked down YAP1 prior to standard 70%-hepatectomy (sHx) using a hepatocyte-specific nanoformulation. Knockdown was effective during the major parenchymal growth phase (S-phase/M-phase peaks at 32 hours/48 hours post-sHx). Liver weight gain was completely suppressed by the knockdown at 32 hours, but was reaccelerated toward 48 hours. Likewise, proliferative markers, Ccna2/b2 and YAP1 target gene expression were downregulated at 32 hours, but re-elevated at 48 hours post-sHx. Nonetheless, knockdown slightly compromised survival after sHx. When assessing a model of resection-induced liver failure (extended 86%-hepatectomy, eHx) featuring deficient S- and M-phase progression, YAP1 was not induced at 32 hours, but upregulated at 48 hours post-eHx, confirming its dissociation from M-phase regulation. Therefore, YAP1 is vital to push hepatocytes into cycle and through the S-phase, but is not required for further cell cycle progression during liver regeneration. The examination of YAP1 in human livers suggested its function is conserved in the regenerating mammalian liver.


Large-Scale Quantitative Proteomics Identifies the Ubiquitin Ligase Nedd4-1 as an Essential Regulator of Liver Regeneration.

  • Marc Bachofner‎ et al.
  • Developmental cell‎
  • 2017‎

The liver is the only organ in mammals that fully regenerates even after major injury. To identify orchestrators of this regenerative response, we performed quantitative large-scale proteomics analysis of cytoplasmic and nuclear fractions from normal versus regenerating mouse liver. Proteins of the ubiquitin-proteasome pathway were rapidly upregulated after two-third hepatectomy, with the ubiquitin ligase Nedd4-1 being a top hit. In vivo knockdown of Nedd4-1 in hepatocytes through nanoparticle-mediated delivery of small interfering RNA caused severe liver damage and inhibition of cell proliferation after hepatectomy, resulting in liver failure. Mechanistically, we demonstrate that Nedd4-1 is required for efficient internalization of major growth factor receptors involved in liver regeneration and their downstream mitogenic signaling. These results highlight the power of large-scale proteomics to identify key players in liver regeneration and the importance of posttranslational regulation of growth factor signaling in this process. Finally, they identify an essential function of Nedd4-1 in tissue repair.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: