Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 46 papers

Palmitate induces apoptosis in mouse aortic endothelial cells and endothelial dysfunction in mice fed high-calorie and high-cholesterol diets.

  • Yunxia Lu‎ et al.
  • Life sciences‎
  • 2013‎

Obesity is associated with hypertriglyceridemia and elevated circulating free fatty acids (FFA), resulting in endothelial dysfunction. Endoplasmic reticulum (ER) stress has been implicated in many of these processes. To determine if ER stress participates in palmitate-induced apoptosis, we investigated the effects of diet-induced obesity and palmitate on mouse aortic endothelial cells (MAEC) in vivo and in vitro.


Purification, characterization and structure of nucleoside diphosphate kinase from Drosophila melanogaster.

  • Lei Qian‎ et al.
  • Protein expression and purification‎
  • 2014‎

Nucleoside diphosphate kinase (NDPK) is a ubiquitous enzyme found in all organisms and cell types, which catalyzes the transfer of the phosphoryl group from a nucleoside triphosphate to a nucleoside diphosphate. The gene encoding for NDPK from Drosophila melanogaster was amplified from the genomic DNA. The recombinant NDPK (rNDPK) was overexpressed in Escherichia coli and purified to homogeneity by Ni-NTA agarose affinity chromatography, HiTrap SP HP cation exchange chromatography and HiLoad 16/60 Superdex 200 gel filtration chromatography. The gel filtration chromatography and analytical ultracentrifugation showed that rNDPK was a trimer in solution. The binding affinity of NDPs with rNDPK, measured by isothermal titration calorimetry, indicated that the purines nucleotides show higher binding affinity compared with pyrimidines. The rNDPK had a definite nuclease activity in vitro, which could cleave supercoiled plasmid DNA, but had no effect on dsDNA and ssDNA. Furthermore, the structure for NDPK was determined by using the sitting drop vapor diffusion method. In the final model, the asymmetric unit is made of three molecules, each of which consists of a four-stranded anti-parallel β-sheets and seven α-helices. Sequence alignment and structure comparison illustrated that the simulated nucleotide-binding active site are conserved.


OCF can repress tumor metastasis by inhibiting epithelial-mesenchymal transition involved in PTEN/PI3K/AKT pathway in lung cancer cells.

  • Ye Yang‎ et al.
  • PloS one‎
  • 2017‎

A component formula with definite compositions provides a new approach to treat various diseases. Salvia miltiorrhiza and Panax ginseng are widely used in China because of their antitumor properties. In the previous study, the optimizing component formula (OCF), prepared with salvianolic acids, ginsenosides, and ginseng polysaccharides (5, 10, and 5 mg·L-1, respectively) extracted from S. miltiorrhiza and P. ginseng on the basis of IC50 in lung cancer A549 cells and damage minimization on human bronchial epithelial cells in vitro. Currently, we also have demonstrated the inhibitory effect of OCF on A549 cell migration and invasion in vitro. According to Lewis lung cancer cells (LLC) allograft in C57BL/6 mice and A549 xenograft in nude mice experiment, we found that the anti-tumor and anti-metastasis effects of OCF treatment were related to the inhibition of epithelial-mesenchymal transition (EMT). Further studies showed that the inhibitory effect of OCF on EMT was associated with the PTEN/PI3K/AKT pathway. Therefore, all studies revealed that OCF could prevent cancer progression and tumor metastasis by inhibiting EMT involved PTEN/PI3K/AKT signaling pathway in lung cancer cells.


Screening and characterization of lactic acid bacterial strains that produce fermented milk and reduce cholesterol levels.

  • Xuefang Guan‎ et al.
  • Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]‎
  • 2017‎

To screen for and characterize lactic acid bacteria strains with the ability to produce fermented milk and reduce cholesterol levels.


Procyanidin B2 mitigates endothelial endoplasmic reticulum stress through a PPARδ-Dependent mechanism.

  • Xin Nie‎ et al.
  • Redox biology‎
  • 2020‎

Hyperglycemia-induced endothelial endoplasmic reticulum (ER) stress is implicated in the pathophysiology of diabetes and its vascular complications. Procyanidins are enriched in many plant foods and have been demonstrated to exert several beneficial effects on diabetes, cardiovascular and other metabolic diseases. In the present study, we investigated the effect of procyanidin B2 (PCB2), the most widely distributed natural procyanidin, on ER stress evoked by high glucose in endothelial cells (ECs) and the underlying mechanisms. We showed that PCB2 mitigated the high glucose-activated ER stress pathways (PERK, IRE1α and ATF6) in human vascular ECs. In addition, we found that PCB2 attenuated endothelial ER stress via the activation of peroxisome proliferator-activated receptor δ (PPARδ). We demonstrated that PCB2 directly bound to and activated PPARδ. Conversely, GSK0660, a selective PPARδ antagonist, attenuated the suppressive effect of PCB2 on the ER stress signal pathway. Functionally, PCB2 ameliorated the high glucose-impaired endothelium-dependent relaxation in mouse aortas. The protective effect of PCB2 on vasodilation was abolished in the aortas pretreated with GSK0660 or those from the EC-specific PPARδ knockout mice. Moreover, the protective effects of PCB2 on ER stress and endothelial dysfunction required the inter-dependent actions of PPARδ and AMPK. Collectively, we demonstrated that PCB2 mitigated ER stress and ameliorated vasodilation via a PPARδ-mediated mechanism beyond its classic action as a scavenger of free radicals. These findings further highlighted the novel roles of procyanidins in intervening the ER stress and metabolic disorders related to endothelial dysfunction.


In vitro fermentation of O‑acetyl‑arabinoxylan from bamboo shavings by human colonic microbiota.

  • Juqing Huang‎ et al.
  • International journal of biological macromolecules‎
  • 2019‎

BSH-1 is an O‑acetyl-arabinoxylan obtained from bamboo shavings. This study investigated its fermentation behavior by human colonic microbiota in vitro. Results showed that BSH-1 remarkably modulated the composition of human colonic microbiota, mainly by increasing the growth of potential beneficial genera (i.e. Bifidobacterium, Lactobacillus, Bacteroides, Prevotella_7, Parabacteroides) and by decreasing the growth of potential harmful genera (i.e. Fusobacterium, Lachnospiraceae_UCG-008, Bilophila and Desulfovibrio). BSH-1 significantly promoted the production of short-chain fatty acids, especially acetic, propionic and n-butyric acids. After 48 h fermentation, the concentration of n-butyric acid in BSH-1 fermentation culture was increased by 2.41 times compared to the blank. During fermentation, the activity of acetyl xylan esterase, arabinofuranosidase, xylanase and xylosidase was enhanced. Moreover, free arabinose, xylose, xylobiose, xylotriose, xylotetraose, xylopentaose and xylohexaose were detected. These results suggest that BSH-1 could potentially be a functional ingredient to improve gut health.


Effectiveness of mRNA-1273 vaccination against SARS-CoV-2 omicron subvariants BA.1, BA.2, BA.2.12.1, BA.4, and BA.5.

  • Hung Fu Tseng‎ et al.
  • Nature communications‎
  • 2023‎

Studies have reported reduced natural SARS-CoV-2 infection- and vaccine-induced neutralization against omicron BA.4/BA.5 compared with earlier omicron subvariants. This test-negative case-control study evaluates mRNA-1273 vaccine effectiveness (VE) against infection and hospitalization with omicron subvariants. The study includes 30,809 SARS-CoV-2 positive and 92,427 SARS-CoV-2 negative individuals aged ≥18 years tested during 1/1/2022-6/30/2022. While 3-dose VE against BA.1 infection is high and wanes slowly, VE against BA.2, BA.2.12.1, BA.4, and BA.5 infection is initially moderate to high (61.0%-90.6% 14-30 days post third dose) and wanes rapidly. The 4-dose VE against infection with BA.2, BA.2.12.1, and BA.4 ranges between 64.3%-75.7%, and is low (30.8%) against BA.5 14-30 days post fourth dose, disappearing beyond 90 days for all subvariants. The 3-dose VE against hospitalization for BA.1, BA.2, and BA.4/BA.5 is 97.5%, 82.0%, and 72.4%, respectively; 4-dose VE against hospitalization for BA.4/BA.5 is 88.5%. Evaluation of the updated bivalent booster is warranted.


The basal forebrain volume reduction detected by MRI does not necessarily link with the cholinergic neuronal loss in the Alzheimer's disease mouse model.

  • Xiaoqing Alice Zhou‎ et al.
  • Neurobiology of aging‎
  • 2022‎

Degeneration of cholinergic neurons in the basal forebrain (BF) contributes to cognitive impairment in Alzheimer's disease (AD) and other disorders. Atrophy of BF volume measured by structural MRI is thought to represent the loss of cholinergic neurons in this structure. As there are multiple types of neurons in the BF as well as glia and axons, whether this MRI measure actually reflects the change of cholinergic neurons has not been verified. In this study, we assessed BF cholinergic neuron number by histological counts and compared with the volume measurements by in vivo MRI in 3xTg mice, a model of familial AD. Both manual and template-based segmentation revealed atrophy of the medial septum (MS), consistent with a significant reduction in cholinergic neuron number. However, MRI-measured volume reduction did not correlate with the reduced cholinergic neuron number. To directly test whether specific loss of cholinergic neurons results in BF atrophy, we selectively ablated the cholinergic neurons in the MS. However, no detectable change in MRI volume was observed between lesioned and unlesioned mice. The results indicate that although loss of cholinergic neurons within the BF likely contributes to volume loss, this volume change cannot be taken as a direct biomarker of cholinergic neuron number.


Postnatal Deletion of Bmal1 in Cardiomyocyte Promotes Pressure Overload Induced Cardiac Remodeling in Mice.

  • Qing Liang‎ et al.
  • Journal of the American Heart Association‎
  • 2022‎

Background Mice with cardiomyocyte-specific deletion of Bmal1, a core clock gene, had spontaneous abnormal cardiac metabolism, dilated cardiomyopathy, and shortened lifespan. However, the role of cardiomyocyte Bmal1 in pressure overload induced cardiac remodeling is unknown. Here we aimed to understand the contribution of cardiomyocyte Bmal1 to cardiac remodeling in response to pressure overload induced by transverse aortic constriction or chronic angiotensin Ⅱ (AngⅡ) infusion. Methods and Results By generating a tamoxifen-inducible cardiomyocyte-specific Bmal1 knockout mouse line (cKO) and challenging the mice with transverse aortic constriction or AngⅡ, we found that compared to littermate controls, the cKO mice displayed remarkably increased cardiac hypertrophy and augmented fibrosis both after transverse aortic constriction and AngⅡ induction, as assessed by echocardiographic, gravimetric, histologic, and molecular analyses. Mechanistically, RNA-sequencing analysis of the heart after transverse aortic constriction exposure revealed that the PI3K/AKT signaling pathway was significantly activated in the cKOs. Consistent with the in vivo findings, in vitro study showed that knockdown of Bmal1 in cardiomyocytes significantly promoted phenylephrine-induced cardiomyocyte hypertrophy and triggered fibroblast-to-myofibroblast differentiation, while inhibition of AKT remarkedly reversed the pro-hypertrophy and pro-fibrosis effects of Bmal1 knocking down. Conclusions These results suggest that postnatal deletion of Bmal1 in cardiomyocytes may promote pressure overload-induced cardiac remodeling. Moreover, we identified PI3K/AKT signaling pathway as the potential mechanistic ties between Bmal1 and cardiac remodeling.


Cholinergic basal forebrain degeneration due to sleep-disordered breathing exacerbates pathology in a mouse model of Alzheimer's disease.

  • Lei Qian‎ et al.
  • Nature communications‎
  • 2022‎

Although epidemiological studies indicate that sleep-disordered breathing (SDB) such as obstructive sleep apnea is a strong risk factor for the development of Alzheimer's disease (AD), the mechanisms of the risk remain unclear. Here we developed a method of modeling SDB in mice that replicates key features of the human condition: altered breathing during sleep, sleep disruption, moderate hypoxemia, and cognitive impairment. When we induced SDB in a familial AD model, the mice displayed exacerbation of cognitive impairment and the pathological features of AD, including increased levels of amyloid-beta and inflammatory markers, as well as selective degeneration of cholinergic basal forebrain neurons. These pathological features were not induced by chronic hypoxia or sleep disruption alone. Our results also revealed that the cholinergic neurodegeneration was mediated by the accumulation of nuclear hypoxia inducible factor 1 alpha. Furthermore, restoring blood oxygen levels during sleep to prevent hypoxia prevented the pathological changes induced by the SDB. These findings suggest a signaling mechanism whereby SDB induces cholinergic basal forebrain degeneration.


Proton-Prompted Ligand Exchange to Achieve High-Efficiency CsPbI3 Quantum Dot Light-Emitting Diodes.

  • Yanming Li‎ et al.
  • Nano-micro letters‎
  • 2024‎

CsPbI3 perovskite quantum dots (QDs) are ideal materials for the next generation of red light-emitting diodes. However, the low phase stability of CsPbI3 QDs and long-chain insulating capping ligands hinder the improvement of device performance. Traditional in-situ ligand replacement and ligand exchange after synthesis were often difficult to control. Here, we proposed a new ligand exchange strategy using a proton-prompted in-situ exchange of short 5-aminopentanoic acid ligands with long-chain oleic acid and oleylamine ligands to obtain stable small-size CsPbI3 QDs. This exchange strategy maintained the size and morphology of CsPbI3 QDs and improved the optical properties and the conductivity of CsPbI3 QDs films. As a result, high-efficiency red QD-based light-emitting diodes with an emission wavelength of 645 nm demonstrated a record maximum external quantum efficiency of 24.45% and an operational half-life of 10.79 h.


Cholinergic basal forebrain neurons regulate fear extinction consolidation through p75 neurotrophin receptor signaling.

  • Zoran Boskovic‎ et al.
  • Translational psychiatry‎
  • 2018‎

Cholinergic basal forebrain (cBF)-derived neurotransmission plays a crucial role in regulating neuronal function throughout the cortex, yet the mechanisms controlling cholinergic innervation to downstream targets have not been elucidated. Here we report that removing the p75 neurotrophin receptor (p75NTR) from cBF neurons induces a significant impairment in fear extinction consolidation. We demonstrate that this is achieved through alterations in synaptic connectivity and functional activity within the medial prefrontal cortex. These deficits revert back to wild-type levels upon re-expression of the active domain of p75NTR in adult animals. These findings demonstrate a novel role for cholinergic neurons in fear extinction consolidation and suggest that neurotrophic signaling is a key regulator of cholinergic-cortical innervation and function.


Troglitazone acutely activates AMP-activated protein kinase and inhibits insulin secretion from beta cells.

  • Xiao Wang‎ et al.
  • Life sciences‎
  • 2007‎

Changes in AMP-activated protein kinase (AMPK) activity contribute to the regulation of insulin secretion. Troglitazone has been shown to lower serum insulin levels and protect beta cell function. The aim of the present study was to examine the effects of troglitazone on AMPK activity and insulin secretion in beta cells. Isolated rat islets and MIN6 cells were treated for a short (1 h) or a long time (20 h) with troglitazone. One-hour troglitazone treatment activated AMPK and inhibited both glucose-stimulated insulin secretion (GSIS) and the response of insulin secretion to combined stimuli of glucose and palmitate. Long (20 h) treatment with troglitazone caused a sustained phosphorylation of AMPK and acetyl-CoA carboxylase, and increased GSIS after withdrawal of the drug. This study provided evidence that troglitazone activated AMPK in beta cells. In addition to the insulin-sensitizing effects in peripheral tissues, troglitazone also directly inhibits insulin hypersecretion by the elevated glucose and fatty acids, and thus protects beta cells from glucolipotoxicity.


Association of the 2020 US Presidential Election With Hospitalizations for Acute Cardiovascular Conditions.

  • Matthew T Mefford‎ et al.
  • JAMA network open‎
  • 2022‎

Prior studies found a higher risk of acute cardiovascular disease (CVD) around population-wide psychosocial or environmental stressors. Less is known about acute CVD risk in relation to political events.


Interleukin-35 exhibits protective effects in a rat model of hypoxic-ischemic encephalopathy through the inhibition of microglia-mediated inflammation.

  • Guangliang Liu‎ et al.
  • Translational pediatrics‎
  • 2022‎

Hypoxic-ischemic encephalopathy (HIE) brain damage is related to inflammatory responses and oxidative stress. Interleukin (IL)-35 is an antioxidant and anti-inflammatory cytokine. Thus, the effect of IL-35 treatment on neonatal rats with hypoxic-ischemic brain injury was investigated.


Interleukin-35 attenuates blood-brain barrier dysfunction caused by cerebral ischemia-reperfusion injury through inhibiting brain endothelial cell injury.

  • Lei Qian‎ et al.
  • Annals of translational medicine‎
  • 2022‎

Interleukin-35 (IL-35), an anti-inflammatory and antioxidant cytokine, plays a potent immunosuppressive role in various diseases. However, the effects of IL-35 on blood-brain barrier (BBB) dysfunction in ischemic stroke are not well characterized.


An interdomain helix in IRE1α mediates the conformational change required for the sensor's activation.

  • Daniela Ricci‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

The unfolded protein response plays an evolutionarily conserved role in homeostasis, and its dysregulation often leads to human disease, including diabetes and cancer. IRE1α is a major transducer that conveys endoplasmic reticulum stress via biochemical signals, yet major gaps persist in our understanding of how the detection of stress is converted to one of several molecular outcomes. It is known that, upon sensing unfolded proteins via its endoplasmic reticulum luminal domain, IRE1α dimerizes and then oligomerizes (often visualized as clustering). Once assembled, the kinase domain trans-autophosphorylates a neighboring IRE1α, inducing a conformational change that activates the RNase effector domain. However, the full details of how the signal is transmitted are not known. Here, we describe a previously unrecognized role for helix αK, located between the kinase and RNase domains of IRE1α, in conveying this critical conformational change. Using constructs containing mutations within this interdomain helix, we show that distinct substitutions affect oligomerization, kinase activity, and the RNase activity of IRE1α differentially. Furthermore, using both biochemical and computational methods, we found that different residues at position 827 specify distinct conformations at distal sites of the protein, such as in the RNase domain. Of importance, an RNase-inactive mutant, L827P, can still dimerize with wildtype monomers, but this mutation inactivates the wildtype molecule and renders leukemic cells more susceptible to stress. We surmise that helix αK is a conduit for the activation of IRE1α in response to stress.


Podoplanin neutralization reduces thrombo-inflammation in experimental ischemic stroke by inhibiting interferon/caspase-1/GSDMD in microglia.

  • Shuang Qian‎ et al.
  • Annals of translational medicine‎
  • 2022‎

Cerebral ischemia/reperfusion (I/R) injury involves the interaction between thrombosis and inflammatory pathways. The aim of this study was to explore the therapeutic effect of podoplanin neutralizing antibody (α-PDPN, clone 8.1.1) on I/R-induced thrombo-inflammation in a mouse model of ischemic stroke.


Efficacy and Safety of Mazdutide in Chinese Patients With Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Phase 2 Trial.

  • Bo Zhang‎ et al.
  • Diabetes care‎
  • 2024‎

We conducted a randomized, double-blind, placebo-controlled phase 2 trial to evaluate the efficacy and safety of mazdutide, a once-weekly glucagon-like peptide 1 and glucagon receptor dual agonist, in Chinese patients with type 2 diabetes.


Identification of a small molecule that simultaneously suppresses virulence and antibiotic resistance of Pseudomonas aeruginosa.

  • Qiaoyun Guo‎ et al.
  • Scientific reports‎
  • 2016‎

The rising antibiotic resistance of bacteria imposes a severe threat on human health. Inhibition of bacterial virulence is an alternative approach to develop new antimicrobials. Molecules targeting antibiotic resistant enzymes have been used in combination with cognate antibiotics. It might be ideal that a molecule can simultaneously suppress virulence factors and antibiotic resistance. Here we combined genetic and computer-aided inhibitor screening to search for such molecules against the bacterial pathogen Pseudomonas aeruginosa. To identify target proteins that control both virulence and antibiotic resistance, we screened for mutants with defective cytotoxicity and biofilm formation from 93 transposon insertion mutants previously reported with increased antibiotic susceptibility. A pyrD mutant displayed defects in cytotoxicity, biofilm formation, quorum sensing and virulence in an acute mouse pneumonia model. Next, we employed a computer-aided screening to identify potential inhibitors of the PyrD protein, a dihydroorotate dehydrogenase (DHODase) involved in pyrimidine biosynthesis. One of the predicted inhibitors was able to suppress the enzymatic activity of PyrD as well as bacterial cytotoxicity, biofilm formation and antibiotic resistance. A single administration of the compound reduced the bacterial colonization in the acute mouse pneumonia model. Therefore, we have developed a strategy to identify novel treatment targets and antimicrobial molecules.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: