Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Purification, characterization and structure of nucleoside diphosphate kinase from Drosophila melanogaster.

Protein expression and purification | 2014

Nucleoside diphosphate kinase (NDPK) is a ubiquitous enzyme found in all organisms and cell types, which catalyzes the transfer of the phosphoryl group from a nucleoside triphosphate to a nucleoside diphosphate. The gene encoding for NDPK from Drosophila melanogaster was amplified from the genomic DNA. The recombinant NDPK (rNDPK) was overexpressed in Escherichia coli and purified to homogeneity by Ni-NTA agarose affinity chromatography, HiTrap SP HP cation exchange chromatography and HiLoad 16/60 Superdex 200 gel filtration chromatography. The gel filtration chromatography and analytical ultracentrifugation showed that rNDPK was a trimer in solution. The binding affinity of NDPs with rNDPK, measured by isothermal titration calorimetry, indicated that the purines nucleotides show higher binding affinity compared with pyrimidines. The rNDPK had a definite nuclease activity in vitro, which could cleave supercoiled plasmid DNA, but had no effect on dsDNA and ssDNA. Furthermore, the structure for NDPK was determined by using the sitting drop vapor diffusion method. In the final model, the asymmetric unit is made of three molecules, each of which consists of a four-stranded anti-parallel β-sheets and seven α-helices. Sequence alignment and structure comparison illustrated that the simulated nucleotide-binding active site are conserved.

Pubmed ID: 25195176 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Coot (tool)

RRID:SCR_014222

Software for macromolecular model building, model completion and validation, and protein modelling using X-ray data. Coot displays maps and models and allows model manipulations such as idealization, rigid-body fitting, ligand search, Ramachandran plots, non-crystallographic symmetry and more. Source code is available.

View all literature mentions

Phenix (tool)

RRID:SCR_014224

A Python-based software suite for the automated determination of molecular structures using X-ray crystallography and other methods. Phenix includes programs for assessing data quality, experimental phasing, molecular replacement, model building, structure refinement, and validation. It also includes tools for reflection data and creating maps and models. Phenix can also be used for neutron crystallography. Tutorials and examples are available in the documentation tab.

View all literature mentions