Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Natural variation in gene expression and viral susceptibility revealed by neural progenitor cell villages.

  • Michael F Wells‎ et al.
  • Cell stem cell‎
  • 2023‎

Human genome variation contributes to diversity in neurodevelopmental outcomes and vulnerabilities; recognizing the underlying molecular and cellular mechanisms will require scalable approaches. Here, we describe a "cell village" experimental platform we used to analyze genetic, molecular, and phenotypic heterogeneity across neural progenitor cells from 44 human donors cultured in a shared in vitro environment using algorithms (Dropulation and Census-seq) to assign cells and phenotypes to individual donors. Through rapid induction of human stem cell-derived neural progenitor cells, measurements of natural genetic variation, and CRISPR-Cas9 genetic perturbations, we identified a common variant that regulates antiviral IFITM3 expression and explains most inter-individual variation in susceptibility to the Zika virus. We also detected expression QTLs corresponding to GWAS loci for brain traits and discovered novel disease-relevant regulators of progenitor proliferation and differentiation such as CACHD1. This approach provides scalable ways to elucidate the effects of genes and genetic variation on cellular phenotypes.


Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1.

  • Evangelos Kiskinis‎ et al.
  • Cell stem cell‎
  • 2014‎

Although many distinct mutations in a variety of genes are known to cause Amyotrophic Lateral Sclerosis (ALS), it remains poorly understood how they selectively impact motor neuron biology and whether they converge on common pathways to cause neuronal degeneration. Here, we have combined reprogramming and stem cell differentiation approaches with genome engineering and RNA sequencing to define the transcriptional and functional changes that are induced in human motor neurons by mutant SOD1. Mutant SOD1 protein induced a transcriptional signature indicative of increased oxidative stress, reduced mitochondrial function, altered subcellular transport, and activation of the ER stress and unfolded protein response pathways. Functional studies demonstrated that these pathways were perturbed in a manner dependent on the SOD1 mutation. Finally, interrogation of stem-cell-derived motor neurons produced from ALS patients harboring a repeat expansion in C9orf72 indicates that at least a subset of these changes are more broadly conserved in ALS.


Genome-wide RNA-Seq of Human Motor Neurons Implicates Selective ER Stress Activation in Spinal Muscular Atrophy.

  • Shi-Yan Ng‎ et al.
  • Cell stem cell‎
  • 2015‎

Spinal muscular atrophy (SMA) is caused by mutations in the SMN1 gene. Because this gene is expressed ubiquitously, it remains poorly understood why motor neurons (MNs) are one of the most affected cell types. To address this question, we carried out RNA sequencing studies using fixed, antibody-labeled, and purified MNs produced from control and SMA patient-derived induced pluripotent stem cells (iPSCs). We found SMA-specific changes in MNs, including hyper-activation of the ER stress pathway. Functional studies demonstrated that inhibition of ER stress improves MN survival in vitro even in MNs expressing low SMN. In SMA mice, systemic delivery of an ER stress inhibitor that crosses the blood-brain barrier led to the preservation of spinal cord MNs. Therefore, our study implies that selective activation of ER stress underlies MN death in SMA. Moreover, the approach we have taken would be broadly applicable to the study of disease-prone human cells in heterogeneous cultures.


Whole-genome analysis of human embryonic stem cells enables rational line selection based on genetic variation.

  • Florian T Merkle‎ et al.
  • Cell stem cell‎
  • 2022‎

Despite their widespread use in research, there has not yet been a systematic genomic analysis of human embryonic stem cell (hESC) lines at a single-nucleotide resolution. We therefore performed whole-genome sequencing (WGS) of 143 hESC lines and annotated their single-nucleotide and structural genetic variants. We found that while a substantial fraction of hESC lines contained large deleterious structural variants, finer-scale structural and single-nucleotide variants (SNVs) that are ascertainable only through WGS analyses were present in hESC genomes and human blood-derived genomes at similar frequencies. Moreover, WGS allowed us to identify SNVs associated with cancer and other diseases that could alter cellular phenotypes and compromise the safety of hESC-derived cellular products transplanted into humans. As a resource to enable reproducible hESC research and safer translation, we provide a user-friendly WGS data portal and a data-driven scheme for cell line maintenance and selection.


Patient hiPSCs Identify Vascular Smooth Muscle Arylacetamide Deacetylase as Protective against Atherosclerosis.

  • Takafumi Toyohara‎ et al.
  • Cell stem cell‎
  • 2020‎

Although susceptibility to cardiovascular disease (CVD) is different for every patient, why some patients with type 2 diabetes mellitus (T2DM) develop CVD while others are protected has not yet been clarified. Using T2DM-patient-derived human induced pluripotent stem cells (hiPSCs), we found that in patients protected from CVD, there was significantly elevated expression of an esterase, arylacetamide deacetylase (AADAC), in vascular smooth muscle cells (VSMCs). We overexpressed this esterase in human primary VSMCs and VSMCs differentiated from hiPSCs and observed that the number of lipid droplets was significantly diminished. Further metabolomic analyses revealed a marked reduction in storage lipids and an increase in membrane phospholipids, suggesting changes in the Kennedy pathway of lipid bioassembly. Cell migration and proliferation were also significantly decreased in AADAC-overexpressing VSMCs. Moreover, apolipoprotein E (Apoe)-knockout mice overexpressing VSMC-specific Aadac showed amelioration of atherosclerotic lesions. Our findings suggest that higher AADAC expression in VSMCs protects T2DM patients from CVD.


Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells.

  • Asif M Maroof‎ et al.
  • Cell stem cell‎
  • 2013‎

Human pluripotent stem cells are a powerful tool for modeling brain development and disease. The human cortex is composed of two major neuronal populations: projection neurons and local interneurons. Cortical interneurons comprise a diverse class of cell types expressing the neurotransmitter GABA. Dysfunction of cortical interneurons has been implicated in neuropsychiatric diseases, including schizophrenia, autism, and epilepsy. Here, we demonstrate the highly efficient derivation of human cortical interneurons in an NKX2.1::GFP human embryonic stem cell reporter line. Manipulating the timing of SHH activation yields three distinct GFP+ populations with specific transcriptional profiles, neurotransmitter phenotypes, and migratory behaviors. Further differentiation in a murine cortical environment yields parvalbumin- and somatostatin-expressing neurons that exhibit synaptic inputs and electrophysiological properties of cortical interneurons. Our study defines the signals sufficient for modeling human ventral forebrain development in vitro and lays the foundation for studying cortical interneuron involvement in human disease pathology.


Conversion of mouse and human fibroblasts into functional spinal motor neurons.

  • Esther Y Son‎ et al.
  • Cell stem cell‎
  • 2011‎

The mammalian nervous system comprises many distinct neuronal subtypes, each with its own phenotype and differential sensitivity to degenerative disease. Although specific neuronal types can be isolated from rodent embryos or engineered from stem cells for translational studies, transcription factor-mediated reprogramming might provide a more direct route to their generation. Here we report that the forced expression of select transcription factors is sufficient to convert mouse and human fibroblasts into induced motor neurons (iMNs). iMNs displayed a morphology, gene expression signature, electrophysiology, synaptic functionality, in vivo engraftment capacity, and sensitivity to degenerative stimuli similar to those of embryo-derived motor neurons. We show that the converting fibroblasts do not transit through a proliferative neural progenitor state, and thus form bona fide motor neurons via a route distinct from embryonic development. Our findings demonstrate that fibroblasts can be converted directly into a specific differentiated and functional neural subtype, the spinal motor neuron.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: