Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 96 papers

Loss-of-function mutations in the C9ORF72 mouse ortholog cause fatal autoimmune disease.

  • Aaron Burberry‎ et al.
  • Science translational medicine‎
  • 2016‎

C9ORF72 mutations are found in a significant fraction of patients suffering from amyotrophic lateral sclerosis and frontotemporal dementia, yet the function of the C9ORF72 gene product remains poorly understood. We show that mice harboring loss-of-function mutations in the ortholog of C9ORF72 develop splenomegaly, neutrophilia, thrombocytopenia, increased expression of inflammatory cytokines, and severe autoimmunity, ultimately leading to a high mortality rate. Transplantation of mutant mouse bone marrow into wild-type recipients was sufficient to recapitulate the phenotypes observed in the mutant animals, including autoimmunity and premature mortality. Reciprocally, transplantation of wild-type mouse bone marrow into mutant mice improved their phenotype. We conclude that C9ORF72 serves an important function within the hematopoietic system to restrict inflammation and the development of autoimmunity.


Genetic variation in human DNA replication timing.

  • Amnon Koren‎ et al.
  • Cell‎
  • 2014‎

Genomic DNA replicates in a choreographed temporal order that impacts the distribution of mutations along the genome. We show here that DNA replication timing is shaped by genetic polymorphisms that act in cis upon megabase-scale DNA segments. In genome sequences from proliferating cells, read depth along chromosomes reflected DNA replication activity in those cells. We used this relationship to analyze variation in replication timing among 161 individuals sequenced by the 1000 Genomes Project. Genome-wide association of replication timing with genetic variation identified 16 loci at which inherited alleles associate with replication timing. We call these "replication timing quantitative trait loci" (rtQTLs). rtQTLs involved the differential use of replication origins, exhibited allele-specific effects on replication timing, and associated with gene expression variation at megabase scales. Our results show replication timing to be shaped by genetic polymorphism and identify a means by which inherited polymorphism regulates the mutability of nearby sequences.


ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair.

  • Joseph R Klim‎ et al.
  • Nature neuroscience‎
  • 2019‎

The findings that amyotrophic lateral sclerosis (ALS) patients almost universally display pathological mislocalization of the RNA-binding protein TDP-43 and that mutations in its gene cause familial ALS have nominated altered RNA metabolism as a disease mechanism. However, the RNAs regulated by TDP-43 in motor neurons and their connection to neuropathy remain to be identified. Here we report transcripts whose abundances in human motor neurons are sensitive to TDP-43 depletion. Notably, expression of STMN2, which encodes a microtubule regulator, declined after TDP-43 knockdown and TDP-43 mislocalization as well as in patient-specific motor neurons and postmortem patient spinal cord. STMN2 loss upon reduced TDP-43 function was due to altered splicing, which is functionally important, as we show STMN2 is necessary for normal axonal outgrowth and regeneration. Notably, post-translational stabilization of STMN2 rescued neurite outgrowth and axon regeneration deficits induced by TDP-43 depletion. We propose that restoring STMN2 expression warrants examination as a therapeutic strategy for ALS.


Oligodendrocyte differentiation of induced pluripotent stem cells derived from subjects with schizophrenias implicate abnormalities in development.

  • Donna L McPhie‎ et al.
  • Translational psychiatry‎
  • 2018‎

Abnormalities of brain connectivity and signal transduction are consistently observed in individuals with schizophrenias (SZ). Underlying these anomalies, convergent in vivo, post mortem, and genomic evidence suggest abnormal oligodendrocyte (OL) development and function and lower myelination in SZ. Our primary hypothesis was that there would be abnormalities in the number of induced pluripotent stem (iPS) cell-derived OLs from subjects with SZ. Our secondary hypothesis was that these in vitro abnormalities would correlate with measures of white matter (WM) integrity and myelination in the same subjects in vivo, estimated from magnetic resonance imaging. Six healthy control (HC) and six SZ iPS cell lines, derived from skin fibroblasts from well-characterized subjects, were differentiated into OLs. FACS analysis of the oligodendrocyte-specific surface, glycoprotein O4, was performed at three time points of development (days 65, 75, and 85) to quantify the number of late oligodendrocyte progenitor cells (OPCs) and OLs in each line. Significantly fewer O4-positive cells developed from SZ versus HC lines (95% CI 1.0: 8.6, F1,10 = 8.06, p = 0.02). The difference was greater when corrected for age (95% CI 5.4:10.4, F1,8 = 53.6, p < 0.001). A correlation between myelin content in WM in vivo, estimated by magnetization transfer ratio (MTR) and number of O4-positive cells in vitro was also observed across all time points (F1,9 = 4.3, p = 0.07), reaching significance for mature OLs at day 85 in culture (r = 0.70, p < 0.02). Low production of OPCs may be a contributing mechanism underlying WM reduction in SZ.


Generation of a TLE1 homozygous knockout human embryonic stem cell line using CRISPR-Cas9.

  • Amanda Herring‎ et al.
  • Stem cell research‎
  • 2016‎

Here, we generated a biallelic mutation in the TLE1 (Transducin Like Enhancer of Split 1) gene using CRISPR-Cas9 editing in the human embryonic stem cell (hESC) line WA01. The homozygous knockout cell line, TLE1-464-G04, displays loss of TLE1 protein expression while maintaining pluripotency, differentiation potential and genomic integrity.


Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches.

  • Robert Machold‎ et al.
  • Neuron‎
  • 2003‎

To directly test the requirement for hedgehog signaling in the telencephalon from early neurogenesis, we examined conditional null alleles of both the Sonic hedgehog and Smoothened genes. While the removal of Shh signaling in these animals resulted in only minor patterning abnormalities, the number of neural progenitors in both the postnatal subventricular zone and hippocampus was dramatically reduced. In the subventricular zone, this was partially attributable to a marked increase in programmed cell death. Consistent with Hedgehog signaling being required for the maintenance of stem cell niches in the adult brain, progenitors from the subventricular zone of floxed Smo animals formed significantly fewer neurospheres. The loss of hedgehog signaling also resulted in abnormalities in the dentate gyrus and olfactory bulb. Furthermore, stimulation of the hedgehog pathway in the mature brain resulted in elevated proliferation in telencephalic progenitors. These results suggest that hedgehog signaling is required to maintain progenitor cells in the postnatal telencephalon.


Reprogramming after chromosome transfer into mouse blastomeres.

  • Dieter Egli‎ et al.
  • Current biology : CB‎
  • 2009‎

It is well known that oocytes can reprogram differentiated cells, allowing animal cloning by nuclear transfer. We have recently shown that fertilized zygotes retain reprogramming activities, suggesting that such activities might also persist in cleavage-stage embryos. Here, we used chromosome transplantation techniques to investigate whether the blastomeres of two-cell-stage mouse embryos can reprogram more differentiated cells. When chromosomes from one of the two blastomeres were replaced with the chromosomes of an embryonic or CD4(+) T lymphocyte donor cell, we observed nuclear reprogramming and efficient contribution of the manipulated cell to the developing blastocyst. Embryos produced by this method could be used to derive stem cell lines and also developed to term, generating mosaic "cloned" animals. These results demonstrate that blastomeres retain reprogramming activities and support the notion that discarded human preimplantation embryos may be useful recipients for the production of genetically tailored human embryonic stem cell lines.


Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations.

  • Florian T Merkle‎ et al.
  • Nature‎
  • 2017‎

Human pluripotent stem cells (hPS cells) can self-renew indefinitely, making them an attractive source for regenerative therapies. This expansion potential has been linked with the acquisition of large copy number variants that provide mutated cells with a growth advantage in culture. The nature, extent and functional effects of other acquired genome sequence mutations in cultured hPS cells are not known. Here we sequence the protein-coding genes (exomes) of 140 independent human embryonic stem cell (hES cell) lines, including 26 lines prepared for potential clinical use. We then apply computational strategies for identifying mutations present in a subset of cells in each hES cell line. Although such mosaic mutations were generally rare, we identified five unrelated hES cell lines that carried six mutations in the TP53 gene that encodes the tumour suppressor P53. The TP53 mutations we observed are dominant negative and are the mutations most commonly seen in human cancers. We found that the TP53 mutant allelic fraction increased with passage number under standard culture conditions, suggesting that the P53 mutations confer selective advantage. We then mined published RNA sequencing data from 117 hPS cell lines, and observed another nine TP53 mutations, all resulting in coding changes in the DNA-binding domain of P53. In three lines, the allelic fraction exceeded 50%, suggesting additional selective advantage resulting from the loss of heterozygosity at the TP53 locus. As the acquisition and expansion of cancer-associated mutations in hPS cells may go unnoticed during most applications, we suggest that careful genetic characterization of hPS cells and their differentiated derivatives be carried out before clinical use.


Monitoring peripheral nerve degeneration in ALS by label-free stimulated Raman scattering imaging.

  • Feng Tian‎ et al.
  • Nature communications‎
  • 2016‎

The study of amyotrophic lateral sclerosis (ALS) and potential interventions would be facilitated if motor axon degeneration could be more readily visualized. Here we demonstrate that stimulated Raman scattering (SRS) microscopy could be used to sensitively monitor peripheral nerve degeneration in ALS mouse models and ALS autopsy materials. Three-dimensional imaging of pre-symptomatic SOD1 mouse models and data processing by a correlation-based algorithm revealed that significant degeneration of peripheral nerves could be detected coincidentally with the earliest detectable signs of muscle denervation and preceded physiologically measurable motor function decline. We also found that peripheral degeneration was an early event in FUS as well as C9ORF72 repeat expansion models of ALS, and that serial imaging allowed long-term observation of disease progression and drug effects in living animals. Our study demonstrates that SRS imaging is a sensitive and quantitative means of measuring disease progression, greatly facilitating future studies of disease mechanisms and candidate therapeutics.


The Antisense Transcript SMN-AS1 Regulates SMN Expression and Is a Novel Therapeutic Target for Spinal Muscular Atrophy.

  • Constantin d'Ydewalle‎ et al.
  • Neuron‎
  • 2017‎

The neuromuscular disorder spinal muscular atrophy (SMA), the most common inherited killer of infants, is caused by insufficient expression of survival motor neuron (SMN) protein. SMA therapeutics development efforts have focused on identifying strategies to increase SMN expression. We identified a long non-coding RNA (lncRNA) that arises from the antisense strand of SMN, SMN-AS1, which is enriched in neurons and transcriptionally represses SMN expression by recruiting the epigenetic Polycomb repressive complex-2. Targeted degradation of SMN-AS1 with antisense oligonucleotides (ASOs) increases SMN expression in patient-derived cells, cultured neurons, and the mouse central nervous system. SMN-AS1 ASOs delivered together with SMN2 splice-switching oligonucleotides additively increase SMN expression and improve survival of severe SMA mice. This study is the first proof of concept that targeting a lncRNA to transcriptionally activate SMN2 can be combined with SMN2 splicing modification to ameliorate SMA and demonstrates the promise of combinatorial ASOs for the treatment of neurogenetic disorders.


All-optical synaptic electrophysiology probes mechanism of ketamine-induced disinhibition.

  • Linlin Z Fan‎ et al.
  • Nature methods‎
  • 2018‎

Optical assays of synaptic strength could facilitate studies of neuronal transmission and its dysregulation in disease. Here we introduce a genetic toolbox for all-optical interrogation of synaptic electrophysiology (synOptopatch) via mutually exclusive expression of a channelrhodopsin actuator and an archaerhodopsin-derived voltage indicator. Optically induced activity in the channelrhodopsin-expressing neurons generated excitatory and inhibitory postsynaptic potentials that we optically resolved in reporter-expressing neurons. We further developed a yellow spine-targeted Ca2+ indicator to localize optogenetically triggered synaptic inputs. We demonstrated synOptopatch recordings in cultured rodent neurons and in acute rodent brain slice. In synOptopatch measurements of primary rodent cultures, acute ketamine administration suppressed disynaptic inhibitory feedbacks, mimicking the effect of this drug on network function in both rodents and humans. We localized this action of ketamine to excitatory synapses onto interneurons. These results establish an in vitro all-optical model of disynaptic disinhibition, a synaptic defect hypothesized in schizophrenia-associated psychosis.


Absence of Survival and Motor Deficits in 500 Repeat C9ORF72 BAC Mice.

  • Daniel A Mordes‎ et al.
  • Neuron‎
  • 2020‎

A hexanucleotide repeat expansion at C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD). Initial studies of bacterial artificial chromosome (BAC) transgenic mice harboring this expansion described an absence of motor and survival phenotypes. However, a recent study by Liu and colleagues described transgenic mice harboring a large repeat expansion (C9-500) and reported decreased survival and progressive motor phenotypes. To determine the utility of the C9-500 animals for understanding degenerative mechanisms, we validated and established two independent colonies of transgene carriers. However, extended studies of these animals for up to 1 year revealed no reproducible abnormalities in survival, motor function, or neurodegeneration. Here, we propose several potential explanations for the disparate nature of our findings from those of Liu and colleagues. Resolving the discrepancies we identify will be essential to settle the translational utility of C9-500 mice. This Matters Arising paper is in response to Liu et al. (2016), published in Neuron. See also the response by Nguyen et al. (2020), published in this issue.


Efficient generation of lower induced motor neurons by coupling Ngn2 expression with developmental cues.

  • Francesco Limone‎ et al.
  • Cell reports‎
  • 2023‎

Human pluripotent stem cells (hPSCs) are a powerful tool for disease modeling of hard-to-access tissues (such as the brain). Current protocols either direct neuronal differentiation with small molecules or use transcription-factor-mediated programming. In this study, we couple overexpression of transcription factor Neurogenin2 (Ngn2) with small molecule patterning to differentiate hPSCs into lower induced motor neurons (liMoNes/liMNs). This approach induces canonical MN markers including MN-specific Hb9/MNX1 in more than 95% of cells. liMNs resemble bona fide hPSC-derived MN, exhibit spontaneous electrical activity, express synaptic markers, and can contact muscle cells in vitro. Pooled, multiplexed single-cell RNA sequencing on 50 hPSC lines reveals reproducible populations of distinct subtypes of cervical and brachial MNs that resemble their in vivo, embryonic counterparts. Combining small molecule patterning with Ngn2 overexpression facilitates high-yield, reproducible production of disease-relevant MN subtypes, which is fundamental in propelling our knowledge of MN biology and its disruption in disease.


Astrocytic cell adhesion genes linked to schizophrenia correlate with synaptic programs in neurons.

  • Olli Pietiläinen‎ et al.
  • Cell reports‎
  • 2023‎

The maturation of neurons and the development of synapses, although emblematic of neurons, also relies on interactions with astrocytes and other glia. Here, to study the role of glia-neuron interactions, we analyze the transcriptomes of human pluripotent stem cell (hPSC)-derived neurons, from 80 human donors, that were cultured with or without contact with glial cells. We find that the presence of astrocytes enhances synaptic gene-expression programs in neurons when in physical contact with astrocytes. These changes in neurons correlate with increased expression, in the cocultured glia, of genes that encode synaptic cell adhesion molecules. Both the neuronal and astrocyte gene-expression programs are enriched for genes associated with schizophrenia risk. Our results suggest that astrocyte-expressed genes with synaptic functions are associated with stronger expression of synaptic genetic programs in neurons, and they suggest a potential role for astrocyte-neuron interactions in schizophrenia.


FOS licenses early events in stem cell activation driving skeletal muscle regeneration.

  • Albert E Almada‎ et al.
  • Cell reports‎
  • 2021‎

Muscle satellite cells (SCs) are a quiescent (non-proliferative) stem cell population in uninjured skeletal muscle. Although SCs have been investigated for nearly 60 years, the molecular drivers that transform quiescent SCs into the rapidly dividing (activated) stem/progenitor cells that mediate muscle repair after injury remain largely unknown. Here we identify a prominent FBJ osteosarcoma oncogene (Fos) mRNA and protein signature in recently activated SCs that is rapidly, heterogeneously, and transiently induced by muscle damage. We further reveal a requirement for FOS to efficiently initiate key stem cell functions, including cell cycle entry, proliferative expansion, and muscle regeneration, via induction of "pro-regenerative" target genes that stimulate cell migration, division, and differentiation. Disruption of one of these Fos/AP-1 targets, NAD(+)-consuming mono-ADP-ribosyl-transferase 1 (Art1), in SCs delays cell cycle entry and impedes progenitor cell expansion and muscle regeneration. This work uncovers an early-activated FOS/ART1/mono-ADP-ribosylation (MARylation) pathway that is essential for stem cell-regenerative responses.


Loss of mouse Stmn2 function causes motor neuropathy.

  • Irune Guerra San Juan‎ et al.
  • Neuron‎
  • 2022‎

Amyotrophic lateral sclerosis (ALS) is characterized by motor neuron degeneration accompanied by aberrant accumulation and loss of function of the RNA-binding protein TDP43. Thus far, it remains unresolved to what extent TDP43 loss of function directly contributes to motor system dysfunction. Here, we employed gene editing to find whether the mouse ortholog of the TDP43-regulated gene STMN2 has an important function in maintaining the motor system. Both mosaic founders and homozygous loss-of-function Stmn2 mice exhibited neuromuscular junction denervation and fragmentation, resulting in muscle atrophy and impaired motor behavior, accompanied by an imbalance in neuronal microtubule dynamics in the spinal cord. The introduction of human STMN2 through BAC transgenesis was sufficient to rescue the motor phenotypes observed in Stmn2 mutant mice. Collectively, our results demonstrate that disrupting the ortholog of a single TDP43-regulated RNA is sufficient to cause substantial motor dysfunction, indicating that disruption of TDP43 function is likely a contributor to ALS.


Natural variation in gene expression and viral susceptibility revealed by neural progenitor cell villages.

  • Michael F Wells‎ et al.
  • Cell stem cell‎
  • 2023‎

Human genome variation contributes to diversity in neurodevelopmental outcomes and vulnerabilities; recognizing the underlying molecular and cellular mechanisms will require scalable approaches. Here, we describe a "cell village" experimental platform we used to analyze genetic, molecular, and phenotypic heterogeneity across neural progenitor cells from 44 human donors cultured in a shared in vitro environment using algorithms (Dropulation and Census-seq) to assign cells and phenotypes to individual donors. Through rapid induction of human stem cell-derived neural progenitor cells, measurements of natural genetic variation, and CRISPR-Cas9 genetic perturbations, we identified a common variant that regulates antiviral IFITM3 expression and explains most inter-individual variation in susceptibility to the Zika virus. We also detected expression QTLs corresponding to GWAS loci for brain traits and discovered novel disease-relevant regulators of progenitor proliferation and differentiation such as CACHD1. This approach provides scalable ways to elucidate the effects of genes and genetic variation on cellular phenotypes.


Exposure of iPSC-derived human microglia to brain substrates enables the generation and manipulation of diverse transcriptional states in vitro.

  • Michael-John Dolan‎ et al.
  • Nature immunology‎
  • 2023‎

Microglia, the macrophages of the brain parenchyma, are key players in neurodegenerative diseases such as Alzheimer's disease. These cells adopt distinct transcriptional subtypes known as states. Understanding state function, especially in human microglia, has been elusive owing to a lack of tools to model and manipulate these cells. Here, we developed a platform for modeling human microglia transcriptional states in vitro. We found that exposure of human stem-cell-differentiated microglia to synaptosomes, myelin debris, apoptotic neurons or synthetic amyloid-beta fibrils generated transcriptional diversity that mapped to gene signatures identified in human brain microglia, including disease-associated microglia, a state enriched in neurodegenerative diseases. Using a new lentiviral approach, we demonstrated that the transcription factor MITF drives a disease-associated transcriptional signature and a highly phagocytic state. Together, these tools enable the manipulation and functional interrogation of human microglial states in both homeostatic and disease-relevant contexts.


Econazole selectively induces cell death in NF1-homozygous mutant tumor cells.

  • Yenal B Lakes‎ et al.
  • Cell reports. Medicine‎
  • 2023‎

Cutaneous neurofibromas (cNFs) are tumors that develop in more than 99% of individuals with neurofibromatosis type 1 (NF1). They develop in the dermis and can number in the thousands. cNFs can be itchy and painful and negatively impact self-esteem. There is no US Food and Drug Administration (FDA)-approved drug for their treatment. Here, we screen a library of FDA-approved drugs using a cNF cell model derived from human induced pluripotent stem cells (hiPSCs) generated from an NF1 patient. We engineer an NF1 mutation in the second allele to mimic loss of heterozygosity, differentiate the NF1+/- and NF1-/- hiPSCs into Schwann cell precursors (SCPs), and use them to screen a drug library to assess for inhibition of NF1-/- but not NF1+/- cell proliferation. We identify econazole nitrate as being effective against NF1-/- hiPSC-SCPs. Econazole cream selectively induces apoptosis in Nf1-/- murine nerve root neurosphere cells and human cNF xenografts. This study supports further testing of econazole for cNF treatment.


High-dimensional phenotyping to define the genetic basis of cellular morphology.

  • Matthew Tegtmeyer‎ et al.
  • Nature communications‎
  • 2024‎

The morphology of cells is dynamic and mediated by genetic and environmental factors. Characterizing how genetic variation impacts cell morphology can provide an important link between disease association and cellular function. Here, we combine genomic sequencing and high-content imaging approaches on iPSCs from 297 unique donors to investigate the relationship between genetic variants and cellular morphology to map what we term cell morphological quantitative trait loci (cmQTLs). We identify novel associations between rare protein altering variants in WASF2, TSPAN15, and PRLR with several morphological traits related to cell shape, nucleic granularity, and mitochondrial distribution. Knockdown of these genes by CRISPRi confirms their role in cell morphology. Analysis of common variants yields one significant association and nominate over 300 variants with suggestive evidence (P < 10-6) of association with one or more morphology traits. We then use these data to make predictions about sample size requirements for increasing discovery in cellular genetic studies. We conclude that, similar to molecular phenotypes, morphological profiling can yield insight about the function of genes and variants.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: