Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

Organization of the connections between claustrum and cortex in the mouse.

  • Quanxin Wang‎ et al.
  • The Journal of comparative neurology‎
  • 2017‎

The connections between the claustrum and the cortex in mouse are systematically investigated with adeno-associated virus (AAV), an anterograde viral tracer. We first define the boundary and the three-dimensional structure of the claustrum based on a variety of molecular and anatomical data. From AAV injections into 42 neocortical and allocortical areas, we conclude that most cortical areas send bilateral projections to the claustrum, the majority being denser on the ipsilateral side. This includes prelimbic, infralimbic, medial, ventrolateral and lateral orbital, ventral retrosplenial, dorsal and posterior agranular insular, visceral, temporal association, dorsal and ventral auditory, ectorhinal, perirhinal, lateral entorhinal, and anteromedial, posteromedial, lateroposterior, laterointermediate, and postrhinal visual areas. In contrast, the cingulate and the secondary motor areas send denser projections to the contralateral claustrum than to the ipsilateral one. The gustatory, primary auditory, primary visual, rostrolateral visual, and medial entorhinal cortices send projections only to the ipsilateral claustrum. Primary motor, primary somatosensory and subicular areas barely send projections to either ipsi- or contralateral claustrum. Corticoclaustral projections are organized in a rough topographic manner, with variable projection strengths. We find that the claustrum, in turn, sends widespread projections preferentially to ipsilateral cortical areas with different projection strengths and laminar distribution patterns and to certain contralateral cortical areas. Our quantitative results show that the claustrum has strong reciprocal and bilateral connections with prefrontal and cingulate areas as well as strong reciprocal connections with the ipsilateral temporal and retrohippocampal areas, suggesting that it may play a crucial role in a variety of cognitive processes. J. Comp. Neurol. 525:1317-1346, 2017. © 2016 Wiley Periodicals, Inc.


Whole brain imaging reveals distinct spatial patterns of amyloid beta deposition in three mouse models of Alzheimer's disease.

  • Jennifer D Whitesell‎ et al.
  • The Journal of comparative neurology‎
  • 2019‎

A variety of Alzheimer's disease (AD) mouse models overexpress mutant forms of human amyloid precursor protein (APP), producing high levels of amyloid β (Aβ) and forming plaques. However, the degree to which these models mimic spatiotemporal patterns of Aβ deposition in brains of AD patients is unknown. Here, we mapped the spatial distribution of Aβ plaques across age in three APP-overexpression mouse lines (APP/PS1, Tg2576, and hAPP-J20) using in vivo labeling with methoxy-X04, high throughput whole brain imaging, and an automated informatics pipeline. Images were acquired with high resolution serial two-photon tomography and labeled plaques were detected using custom-built segmentation algorithms. Image series were registered to the Allen Mouse Brain Common Coordinate Framework, a 3D reference atlas, enabling automated brain-wide quantification of plaque density, number, and location. In both APP/PS1 and Tg2576 mice, plaques were identified first in isocortex, followed by olfactory, hippocampal, and cortical subplate areas. In hAPP-J20 mice, plaque density was highest in hippocampal areas, followed by isocortex, with little to no involvement of olfactory or cortical subplate areas. Within the major brain divisions, distinct regions were identified with high (or low) plaque accumulation; for example, the lateral visual area within the isocortex of APP/PS1 mice had relatively higher plaque density compared with other cortical areas, while in hAPP-J20 mice, plaques were densest in the ventral retrosplenial cortex. In summary, we show how whole brain imaging of amyloid pathology in mice reveals the extent to which a given model recapitulates the regional Aβ deposition patterns described in AD.


Shared and distinct transcriptomic cell types across neocortical areas.

  • Bosiljka Tasic‎ et al.
  • Nature‎
  • 2018‎

The neocortex contains a multitude of cell types that are segregated into layers and functionally distinct areas. To investigate the diversity of cell types across the mouse neocortex, here we analysed 23,822 cells from two areas at distant poles of the mouse neocortex: the primary visual cortex and the anterior lateral motor cortex. We define 133 transcriptomic cell types by deep, single-cell RNA sequencing. Nearly all types of GABA (γ-aminobutyric acid)-containing neurons are shared across both areas, whereas most types of glutamatergic neurons were found in one of the two areas. By combining single-cell RNA sequencing and retrograde labelling, we match transcriptomic types of glutamatergic neurons to their long-range projection specificity. Our study establishes a combined transcriptomic and projectional taxonomy of cortical cell types from functionally distinct areas of the adult mouse cortex.


Morphological diversity of single neurons in molecularly defined cell types.

  • Hanchuan Peng‎ et al.
  • Nature‎
  • 2021‎

Dendritic and axonal morphology reflects the input and output of neurons and is a defining feature of neuronal types1,2, yet our knowledge of its diversity remains limited. Here, to systematically examine complete single-neuron morphologies on a brain-wide scale, we established a pipeline encompassing sparse labelling, whole-brain imaging, reconstruction, registration and analysis. We fully reconstructed 1,741 neurons from cortex, claustrum, thalamus, striatum and other brain regions in mice. We identified 11 major projection neuron types with distinct morphological features and corresponding transcriptomic identities. Extensive projectional diversity was found within each of these major types, on the basis of which some types were clustered into more refined subtypes. This diversity follows a set of generalizable principles that govern long-range axonal projections at different levels, including molecular correspondence, divergent or convergent projection, axon termination pattern, regional specificity, topography, and individual cell variability. Although clear concordance with transcriptomic profiles is evident at the level of major projection type, fine-grained morphological diversity often does not readily correlate with transcriptomic subtypes derived from unsupervised clustering, highlighting the need for single-cell cross-modality studies. Overall, our study demonstrates the crucial need for quantitative description of complete single-cell anatomy in cell-type classification, as single-cell morphological diversity reveals a plethora of ways in which different cell types and their individual members may contribute to the configuration and function of their respective circuits.


Endogenous pathology in tauopathy mice progresses via brain networks.

  • Denise M O Ramirez‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Neurodegenerative tauopathies are hypothesized to propagate via brain networks. This is uncertain because we have lacked precise network resolution of pathology. We therefore developed whole-brain staining methods with anti-p-tau nanobodies and imaged in 3D PS19 tauopathy mice, which have pan-neuronal expression of full-length human tau containing the P301S mutation. We analyzed patterns of p-tau deposition across established brain networks at multiple ages, testing the relationship between structural connectivity and patterns of progressive pathology. We identified core regions with early tau deposition, and used network propagation modeling to determine the link between tau pathology and connectivity strength. We discovered a bias towards retrograde network-based propagation of tau. This novel approach establishes a fundamental role for brain networks in tau propagation, with implications for human disease.


Regional and cell-type-specific afferent and efferent projections of the mouse claustrum.

  • Quanxin Wang‎ et al.
  • Cell reports‎
  • 2023‎

The claustrum (CLA) is a conspicuous subcortical structure interconnected with cortical and subcortical regions. Its regional anatomy and cell-type-specific connections in the mouse remain not fully determined. Using multimodal reference datasets, we confirmed the delineation of the mouse CLA as a single group of neurons embedded in the agranular insular cortex. We quantitatively investigated brain-wide inputs and outputs of CLA using bulk anterograde and retrograde viral tracing data and single neuron tracing data. We found that the prefrontal module has more cell types projecting to the CLA than other cortical modules, with layer 5 IT neurons predominating. We found nine morphological types of CLA principal neurons that topographically innervate functionally linked cortical targets, preferentially the midline cortical areas, secondary motor area, and entorhinal area. Together, this study provides a detailed wiring diagram of the cell-type-specific connections of the mouse CLA, laying a foundation for studying its functions at the cellular level.


Human P301L-mutant tau expression in mouse entorhinal-hippocampal network causes tau aggregation and presynaptic pathology but no cognitive deficits.

  • Julie A Harris‎ et al.
  • PloS one‎
  • 2012‎

Accumulation of hyperphosphorylated tau in the entorhinal cortex (EC) is one of the earliest pathological hallmarks in patients with Alzheimer's disease (AD). It can occur before significant Aβ deposition and appears to "spread" into anatomically connected brain regions. To determine whether this early-stage pathology is sufficient to cause disease progression and cognitive decline in experimental models, we overexpressed mutant human tau (hTauP301L) predominantly in layer II/III neurons of the mouse EC. Cognitive functions remained normal in mice at 4, 8, 12 and 16 months of age, despite early and extensive tau accumulation in the EC. Perforant path (PP) axon terminals within the dentate gyrus (DG) contained abnormal conformations of tau even in young EC-hTau mice, and phosphorylated tau increased with age in both the EC and PP. In old mice, ultrastructural alterations in presynaptic terminals were observed at PP-to-granule cell synapses. Phosphorylated tau was more abundant in presynaptic than postsynaptic elements. Human and pathological tau was also detected within hippocampal neurons of this mouse model. Thus, hTauP301L accumulation predominantly in the EC and related presynaptic pathology in hippocampal circuits was not sufficient to cause robust cognitive deficits within the age range analyzed here.


Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation.

  • Julie A Harris‎ et al.
  • Frontiers in neural circuits‎
  • 2014‎

Significant advances in circuit-level analyses of the brain require tools that allow for labeling, modulation of gene expression, and monitoring and manipulation of cellular activity in specific cell types and/or anatomical regions. Large-scale projects and individual laboratories have produced hundreds of gene-specific promoter-driven Cre mouse lines invaluable for enabling genetic access to subpopulations of cells in the brain. However, the potential utility of each line may not be fully realized without systematic whole brain characterization of transgene expression patterns. We established a high-throughput in situ hybridization (ISH), imaging and data processing pipeline to describe whole brain gene expression patterns in Cre driver mice. Currently, anatomical data from over 100 Cre driver lines are publicly available via the Allen Institute's Transgenic Characterization database, which can be used to assist researchers in choosing the appropriate Cre drivers for functional, molecular, or connectional studies of different regions and/or cell types in the brain.


Novel App knock-in mouse model shows key features of amyloid pathology and reveals profound metabolic dysregulation of microglia.

  • Dan Xia‎ et al.
  • Molecular neurodegeneration‎
  • 2022‎

Genetic mutations underlying familial Alzheimer's disease (AD) were identified decades ago, but the field is still in search of transformative therapies for patients. While mouse models based on overexpression of mutated transgenes have yielded key insights in mechanisms of disease, those models are subject to artifacts, including random genetic integration of the transgene, ectopic expression and non-physiological protein levels. The genetic engineering of novel mouse models using knock-in approaches addresses some of those limitations. With mounting evidence of the role played by microglia in AD, high-dimensional approaches to phenotype microglia in those models are critical to refine our understanding of the immune response in the brain.


High-resolution data-driven model of the mouse connectome.

  • Joseph E Knox‎ et al.
  • Network neuroscience (Cambridge, Mass.)‎
  • 2019‎

Knowledge of mesoscopic brain connectivity is important for understanding inter- and intraregion information processing. Models of structural connectivity are typically constructed and analyzed with the assumption that regions are homogeneous. We instead use the Allen Mouse Brain Connectivity Atlas to construct a model of whole-brain connectivity at the scale of 100 μm voxels. The data consist of 428 anterograde tracing experiments in wild type C57BL/6J mice, mapping fluorescently labeled neuronal projections brain-wide. Inferring spatial connectivity with this dataset is underdetermined, since the approximately 2 × 105 source voxels outnumber the number of experiments. To address this issue, we assume that connection patterns and strengths vary smoothly across major brain divisions. We model the connectivity at each voxel as a radial basis kernel-weighted average of the projection patterns of nearby injections. The voxel model outperforms a previous regional model in predicting held-out experiments and compared with a human-curated dataset. This voxel-scale model of the mouse connectome permits researchers to extend their previous analyses of structural connectivity to much higher levels of resolution, and it allows for comparison with functional imaging and other datasets.


Hierarchical organization of cortical and thalamic connectivity.

  • Julie A Harris‎ et al.
  • Nature‎
  • 2019‎

The mammalian cortex is a laminar structure containing many areas and cell types that are densely interconnected in complex ways, and for which generalizable principles of organization remain mostly unknown. Here we describe a major expansion of the Allen Mouse Brain Connectivity Atlas resource1, involving around a thousand new tracer experiments in the cortex and its main satellite structure, the thalamus. We used Cre driver lines (mice expressing Cre recombinase) to comprehensively and selectively label brain-wide connections by layer and class of projection neuron. Through observations of axon termination patterns, we have derived a set of generalized anatomical rules to describe corticocortical, thalamocortical and corticothalamic projections. We have built a model to assign connection patterns between areas as either feedforward or feedback, and generated testable predictions of hierarchical positions for individual cortical and thalamic areas and for cortical network modules. Our results show that cell-class-specific connections are organized in a shallow hierarchy within the mouse corticothalamic network.


Regional, Layer, and Cell-Type-Specific Connectivity of the Mouse Default Mode Network.

  • Jennifer D Whitesell‎ et al.
  • Neuron‎
  • 2021‎

The evolutionarily conserved default mode network (DMN) is a distributed set of brain regions coactivated during resting states that is vulnerable to brain disorders. How disease affects the DMN is unknown, but detailed anatomical descriptions could provide clues. Mice offer an opportunity to investigate structural connectivity of the DMN across spatial scales with cell-type resolution. We co-registered maps from functional magnetic resonance imaging and axonal tracing experiments into the 3D Allen mouse brain reference atlas. We find that the mouse DMN consists of preferentially interconnected cortical regions. As a population, DMN layer 2/3 (L2/3) neurons project almost exclusively to other DMN regions, whereas L5 neurons project in and out of the DMN. In the retrosplenial cortex, a core DMN region, we identify two L5 projection types differentiated by in- or out-DMN targets, laminar position, and gene expression. These results provide a multi-scale description of the anatomical correlates of the mouse DMN.


Genetic dissection of the glutamatergic neuron system in cerebral cortex.

  • Katherine S Matho‎ et al.
  • Nature‎
  • 2021‎

Diverse types of glutamatergic pyramidal neurons mediate the myriad processing streams and output channels of the cerebral cortex1,2, yet all derive from neural progenitors of the embryonic dorsal telencephalon3,4. Here we establish genetic strategies and tools for dissecting and fate-mapping subpopulations of pyramidal neurons on the basis of their developmental and molecular programs. We leverage key transcription factors and effector genes to systematically target temporal patterning programs in progenitors and differentiation programs in postmitotic neurons. We generated over a dozen temporally inducible mouse Cre and Flp knock-in driver lines to enable the combinatorial targeting of major progenitor types and projection classes. Combinatorial strategies confer viral access to subsets of pyramidal neurons defined by developmental origin, marker expression, anatomical location and projection targets. These strategies establish an experimental framework for understanding the hierarchical organization and developmental trajectory of subpopulations of pyramidal neurons that assemble cortical processing networks and output channels.


Cellular anatomy of the mouse primary motor cortex.

  • Rodrigo Muñoz-Castañeda‎ et al.
  • Nature‎
  • 2021‎

An essential step toward understanding brain function is to establish a structural framework with cellular resolution on which multi-scale datasets spanning molecules, cells, circuits and systems can be integrated and interpreted1. Here, as part of the collaborative Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based anatomical description of one exemplar brain structure, the mouse primary motor cortex, upper limb area (MOp-ul). Using genetic and viral labelling, barcoded anatomy resolved by sequencing, single-neuron reconstruction, whole-brain imaging and cloud-based neuroinformatics tools, we delineated the MOp-ul in 3D and refined its sublaminar organization. We defined around two dozen projection neuron types in the MOp-ul and derived an input-output wiring diagram, which will facilitate future analyses of motor control circuitry across molecular, cellular and system levels. This work provides a roadmap towards a comprehensive cellular-resolution description of mammalian brain architecture.


A whole-brain monosynaptic input connectome to neuron classes in mouse visual cortex.

  • Shenqin Yao‎ et al.
  • Nature neuroscience‎
  • 2023‎

Identification of structural connections between neurons is a prerequisite to understanding brain function. Here we developed a pipeline to systematically map brain-wide monosynaptic input connections to genetically defined neuronal populations using an optimized rabies tracing system. We used mouse visual cortex as the exemplar system and revealed quantitative target-specific, layer-specific and cell-class-specific differences in its presynaptic connectomes. The retrograde connectivity indicates the presence of ventral and dorsal visual streams and further reveals topographically organized and continuously varying subnetworks mediated by different higher visual areas. The visual cortex hierarchy can be derived from intracortical feedforward and feedback pathways mediated by upper-layer and lower-layer input neurons. We also identify a new role for layer 6 neurons in mediating reciprocal interhemispheric connections. This study expands our knowledge of the visual system connectomes and demonstrates that the pipeline can be scaled up to dissect connectivity of different cell populations across the mouse brain.


The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas.

  • Quanxin Wang‎ et al.
  • Cell‎
  • 2020‎

Recent large-scale collaborations are generating major surveys of cell types and connections in the mouse brain, collecting large amounts of data across modalities, spatial scales, and brain areas. Successful integration of these data requires a standard 3D reference atlas. Here, we present the Allen Mouse Brain Common Coordinate Framework (CCFv3) as such a resource. We constructed an average template brain at 10 μm voxel resolution by interpolating high resolution in-plane serial two-photon tomography images with 100 μm z-sampling from 1,675 young adult C57BL/6J mice. Then, using multimodal reference data, we parcellated the entire brain directly in 3D, labeling every voxel with a brain structure spanning 43 isocortical areas and their layers, 329 subcortical gray matter structures, 81 fiber tracts, and 8 ventricular structures. CCFv3 can be used to analyze, visualize, and integrate multimodal and multiscale datasets in 3D and is openly accessible (https://atlas.brain-map.org/).


A Suite of Transgenic Driver and Reporter Mouse Lines with Enhanced Brain-Cell-Type Targeting and Functionality.

  • Tanya L Daigle‎ et al.
  • Cell‎
  • 2018‎

Modern genetic approaches are powerful in providing access to diverse cell types in the brain and facilitating the study of their function. Here, we report a large set of driver and reporter transgenic mouse lines, including 23 new driver lines targeting a variety of cortical and subcortical cell populations and 26 new reporter lines expressing an array of molecular tools. In particular, we describe the TIGRE2.0 transgenic platform and introduce Cre-dependent reporter lines that enable optical physiology, optogenetics, and sparse labeling of genetically defined cell populations. TIGRE2.0 reporters broke the barrier in transgene expression level of single-copy targeted-insertion transgenesis in a wide range of neuronal types, along with additional advantage of a simplified breeding strategy compared to our first-generation TIGRE lines. These novel transgenic lines greatly expand the repertoire of high-precision genetic tools available to effectively identify, monitor, and manipulate distinct cell types in the mouse brain.


Efferent pathways of the mouse lateral habenula.

  • Lely A Quina‎ et al.
  • The Journal of comparative neurology‎
  • 2015‎

The lateral habenula (LHb) is part of the habenula complex of the dorsal thalamus. Recent studies of the LHb have focused on its projections to the ventral tegmental area (VTA) and rostromedial tegmental nucleus (RMTg), which contain γ-aminobutyric acid (GABA)ergic neurons that mediate reward prediction error via inhibition of dopaminergic activity. However, older studies in the rat have also identified LHb outputs to the lateral and posterior hypothalamus, median raphe, dorsal raphe, and dorsal tegmentum. Although these studies have shown that the medial and lateral divisions of the LHb have somewhat distinct projections, the topographic specificity of LHb efferents is not completely understood, and the relative extent of these projections to brainstem targets is unknown. Here we have used anterograde tracing with adeno-associated virus-mediated expression of green fluorescent protein, combined with serial two-photon tomography, to map the efferents of the LHb on a standard coordinate system for the entire mouse brain, and reconstruct the efferent pathways of the LHb in three dimensions. Using automated quantitation of fiber density, we show that in addition to the RMTg, the median raphe, caudal dorsal raphe, and pontine central gray are major recipients of LHb efferents. By using retrograde tract tracing with cholera toxin subunit B, we show that LHb neurons projecting to the hypothalamus, VTA, median raphe, caudal dorsal raphe, and pontine central gray reside in characteristic, but sometimes overlapping regions of the LHb. Together these results provide the anatomical basis for systematic studies of LHb function in neural circuits and behavior in mice. J. Comp. Neurol. 523:32-60, 2015. © 2014 Wiley Periodicals, Inc.


Diverse Central Projection Patterns of Retinal Ganglion Cells.

  • Emily M Martersteck‎ et al.
  • Cell reports‎
  • 2017‎

Understanding how >30 types of retinal ganglion cells (RGCs) in the mouse retina each contribute to visual processing in the brain will require more tools that label and manipulate specific RGCs. We screened and analyzed retinal expression of Cre recombinase using 88 transgenic driver lines. In many lines, Cre was expressed in multiple RGC types and retinal cell classes, but several exhibited more selective expression. We comprehensively mapped central projections from RGCs labeled in 26 Cre lines using viral tracers, high-throughput imaging, and a data processing pipeline. We identified over 50 retinorecipient regions and present a quantitative retina-to-brain connectivity map, enabling comparisons of target-specificity across lines. Projections to two major central targets were notably correlated: RGCs projecting to the outer shell or core regions of the lateral geniculate projected to superficial or deep layers within the superior colliculus, respectively. Retinal images and projection data are available online at http://connectivity.brain-map.org.


Nontoxic, double-deletion-mutant rabies viral vectors for retrograde targeting of projection neurons.

  • Soumya Chatterjee‎ et al.
  • Nature neuroscience‎
  • 2018‎

Recombinant rabies viral vectors have proven useful for applications including retrograde targeting of projection neurons and monosynaptic tracing, but their cytotoxicity has limited their use to short-term experiments. Here we introduce a new class of double-deletion-mutant rabies viral vectors that left transduced cells alive and healthy indefinitely. Deletion of the viral polymerase gene abolished cytotoxicity and reduced transgene expression to trace levels but left vectors still able to retrogradely infect projection neurons and express recombinases, allowing downstream expression of other transgene products such as fluorophores and calcium indicators. The morphology of retrogradely targeted cells appeared unperturbed at 1 year postinjection. Whole-cell patch-clamp recordings showed no physiological abnormalities at 8 weeks. Longitudinal two-photon structural and functional imaging in vivo, tracking thousands of individual neurons for up to 4 months, showed that transduced neurons did not die but retained stable visual response properties even at the longest time points imaged.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: