2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 65 papers

TRF2 recruits RTEL1 to telomeres in S phase to promote t-loop unwinding.

  • Grzegorz Sarek‎ et al.
  • Molecular cell‎
  • 2015‎

The helicase RTEL1 promotes t-loop unwinding and suppresses telomere fragility to maintain the integrity of vertebrate telomeres. An interaction between RTEL1 and PCNA is important to prevent telomere fragility, but how RTEL1 engages with the telomere to promote t-loop unwinding is unclear. Here, we establish that the shelterin protein TRF2 recruits RTEL1 to telomeres in S phase, which is required to prevent catastrophic t-loop processing by structure-specific nucleases. We show that the TRF2-RTEL1 interaction is mediated by a metal-coordinating C4C4 motif in RTEL1, which is compromised by the Hoyeraal-Hreidarsson syndrome (HHS) mutation, RTEL1(R1264H). Conversely, we define a TRF2(I124D) substitution mutation within the TRFH domain of TRF2, which eliminates RTEL1 binding and phenocopies the RTEL1(R1264H) mutation, giving rise to aberrant t-loop excision, telomere length heterogeneity, and loss of the telomere as a circle. These results implicate TRF2 in the recruitment of RTEL1 to facilitate t-loop disassembly at telomeres in S phase.


Hoyeraal-Hreidarsson syndrome caused by a germline mutation in the TEL patch of the telomere protein TPP1.

  • Hande Kocak‎ et al.
  • Genes & development‎
  • 2014‎

Germline mutations in telomere biology genes cause dyskeratosis congenita (DC), an inherited bone marrow failure and cancer predisposition syndrome. DC is a clinically heterogeneous disorder diagnosed by the triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia; Hoyeraal-Hreidarsson syndrome (HH), a clinically severe variant of DC, also includes cerebellar hypoplasia, immunodeficiency, and intrauterine growth retardation. Approximately 70% of DC cases are associated with a germline mutation in one of nine genes, the products of which are all involved in telomere biology. Using exome sequencing, we identified mutations in Adrenocortical Dysplasia Homolog (ACD) (encoding TPP1), a component of the telomeric shelterin complex, in one family affected by HH. The proband inherited a deletion from his father and a missense mutation from his mother, resulting in extremely short telomeres and a severe clinical phenotype. Characterization of the mutations revealed that the single-amino-acid deletion affecting the TEL patch surface of the TPP1 protein significantly compromises both telomerase recruitment and processivity, while the missense mutation in the TIN2-binding region of TPP1 is not as clearly deleterious to TPP1 function. Our results emphasize the critical roles of the TEL patch in proper stem cell function and demonstrate that TPP1 is the second shelterin component (in addition to TIN2) to be implicated in DC.


Dubowitz syndrome is a complex comprised of multiple, genetically distinct and phenotypically overlapping disorders.

  • Douglas R Stewart‎ et al.
  • PloS one‎
  • 2014‎

Dubowitz syndrome is a rare disorder characterized by multiple congenital anomalies, cognitive delay, growth failure, an immune defect, and an increased risk of blood dyscrasia and malignancy. There is considerable phenotypic variability, suggesting genetic heterogeneity. We clinically characterized and performed exome sequencing and high-density array SNP genotyping on three individuals with Dubowitz syndrome, including a pair of previously-described siblings (Patients 1 and 2, brother and sister) and an unpublished patient (Patient 3). Given the siblings' history of bone marrow abnormalities, we also evaluated telomere length and performed radiosensitivity assays. In the siblings, exome sequencing identified compound heterozygosity for a known rare nonsense substitution in the nuclear ligase gene LIG4 (rs104894419, NM_002312.3:c.2440C>T) that predicts p.Arg814X (MAF:0.0002) and an NM_002312.3:c.613delT variant that predicts a p.Ser205Leufs*29 frameshift. The frameshift mutation has not been reported in 1000 Genomes, ESP, or ClinSeq. These LIG4 mutations were previously reported in the sibling sister; her brother had not been previously tested. Western blotting showed an absence of a ligase IV band in both siblings. In the third patient, array SNP genotyping revealed a de novo ∼ 3.89 Mb interstitial deletion at chromosome 17q24.2 (chr 17:62,068,463-65,963,102, hg18), which spanned the known Carney complex gene PRKAR1A. In all three patients, a median lymphocyte telomere length of ≤ 1st centile was observed and radiosensitivity assays showed increased sensitivity to ionizing radiation. Our work suggests that, in addition to dyskeratosis congenita, LIG4 and 17q24.2 syndromes also feature shortened telomeres; to confirm this, telomere length testing should be considered in both disorders. Taken together, our work and other reports on Dubowitz syndrome, as currently recognized, suggest that it is not a unitary entity but instead a collection of phenotypically similar disorders. As a clinical entity, Dubowitz syndrome will need continual re-evaluation and re-definition as its constituent phenotypes are determined.


Characterization of population-based variation and putative functional elements for the multiple-cancer susceptibility loci at 5p15.33.

  • Lisa Mirabello‎ et al.
  • F1000Research‎
  • 2014‎

TERT encodes the telomerase reverse transcriptase, which is responsible for maintaining telomere ends by addition of (TTAGGG) n nucleotide repeats at the telomere.  Recent genome-wide association studies have found common genetic variants at the TERT-CLPTM1L locus (5p15.33) associated with an increased risk of several cancers. 


Genetic association studies in cancer: good, bad or no longer ugly?

  • Sharon A Savage‎ et al.
  • Human genomics‎
  • 2006‎

For some time, investigators have appreciated that genetic association studies in cancer are complex because of the multi-stage process of cancer and the daunting challenge of analysing genetic variants in population and family studies. Because of recent technological advances and annotation of common genetic variation in the human genome, it is now possible for investigators to study genetic variation and cancer risk in many different settings. While these studies hold great promise for unravelling multiple genetic risk factors that contribute to the set of complex diseases called cancer, it is also imperative that study design and methods of interpretation be carefully considered. Replication of results in sufficiently large, well-powered studies is critical if genetic variation is to realise the promise of personalised medicine--namely, using genetic data to individualise medical decisions. In this regard, the plausibility of validated genetic variants can only be realised by the study of gene-gene and gene-environment interactions. The genetic association study in cancer has come a long way from the days of restriction fragment length polymorphisms, and now promises to scan an entire genome 'agnostically' in search of genetic markers for a disease or outcome. Moreover, the application and interpretation of these studies should be conducted cautiously.


ZIP4H (TEX11) deficiency in the mouse impairs meiotic double strand break repair and the regulation of crossing over.

  • Carrie A Adelman‎ et al.
  • PLoS genetics‎
  • 2008‎

We have recently shown that hypomorphic Mre11 complex mouse mutants exhibit defects in the repair of meiotic double strand breaks (DSBs). This is associated with perturbation of synaptonemal complex morphogenesis, repair and regulation of crossover formation. To further assess the Mre11 complex's role in meiotic progression, we identified testis-specific NBS1-interacting proteins via two-hybrid screening in yeast. In this screen, Zip4h (Tex11), a male germ cell specific X-linked gene was isolated. Based on sequence and predicted structural similarity to the S. cerevisiae and A. thaliana Zip4 orthologs, ZIP4H appears to be the mammalian ortholog. In S. cerevisiae and A. thaliana, Zip4 is a meiosis-specific protein that regulates the level of meiotic crossovers, thus influencing homologous chromosome segregation in these organisms. As is true for hypomorphic Nbs1 (Nbs1(DeltaB/DeltaB)) mice, Zip4h(-/Y) mutant mice were fertile. Analysis of spermatocytes revealed a delay in meiotic double strand break repair and decreased crossover formation as inferred from DMC1 and MLH1 staining patterns, respectively. Achiasmate chromosomes at the first meiotic division were also observed in Zip4h(-/Y) mutants, consistent with the observed reduction in MLH1 focus formation. These results indicate that meiotic functions of Zip4 family members are conserved and support the view that the Mre11 complex and ZIP4H interact functionally during the execution of the meiotic program in mammals.


Telomeres and the natural lifespan limit in humans.

  • Troels Steenstrup‎ et al.
  • Aging‎
  • 2017‎

An ongoing debate in demography has focused on whether the human lifespan has a maximal natural limit. Taking a mechanistic perspective, and knowing that short telomeres are associated with diminished longevity, we examined whether telomere length dynamics during adult life could set a maximal natural lifespan limit. We define leukocyte telomere length of 5 kb as the 'telomeric brink', which denotes a high risk of imminent death. We show that a subset of adults may reach the telomeric brink within the current life expectancy and more so for a 100-year life expectancy. Thus, secular trends in life expectancy should confront a biological limit due to crossing the telomeric brink.


Re-equilibration of imbalanced NAD metabolism ameliorates the impact of telomere dysfunction.

  • Chongkui Sun‎ et al.
  • The EMBO journal‎
  • 2020‎

Short telomeres are a principal defining feature of telomere biology disorders, such as dyskeratosis congenita (DC), for which there are no effective treatments. Here, we report that primary fibroblasts from DC patients and late generation telomerase knockout mice display lower nicotinamide adenine dinucleotide (NAD) levels, and an imbalance in the NAD metabolome that includes elevated CD38 NADase and reduced poly(ADP-ribose) polymerase and SIRT1 activities, respectively, affecting many associated biological pathways. Supplementation with the NAD precursor, nicotinamide riboside, and CD38 inhibition improved NAD homeostasis, thereby alleviating telomere damage, defective mitochondrial biosynthesis and clearance, cell growth retardation, and cellular senescence of DC fibroblasts. These findings reveal a direct, underlying role of NAD dysregulation when telomeres are short and underscore its relevance to the pathophysiology and interventions of human telomere-driven diseases.


Association between coffee drinking and telomere length in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial.

  • Bella Steiner‎ et al.
  • PloS one‎
  • 2020‎

Mounting evidence indicates that coffee, a commonly consumed beverage worldwide, is inversely associated with various chronic diseases and overall mortality. Few studies have evaluated the effect of coffee drinking on telomere length, a biomarker of chromosomal integrity, and results have been inconsistent. Understanding this association may provide mechanistic insight into associations of coffee with health. The aim of our study was to test the hypothesis that heavier coffee intake is associated with greater likelihood of having above-median telomere length. We evaluated the cross-sectional association between coffee intake and relative telomere length using data from 1,638 controls from four previously conducted case-control studies nested in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Coffee intake was assessed using a food frequency questionnaire, and relative telomere length was measured from buffy-coat, blood, or buccal cells. We used unconditional logistic regression models to generate multivariable-adjusted, study-specific odds ratios for the association between coffee intake and relative telomere length. We then conducted a random-effects meta-analysis to determine summary odds ratios. We found that neither summary continuous (OR = 1.01, 95% CI = 0.99-1.03) nor categorical (OR <3 cups/day vs. none = 1.37, 95% CI = 0.71-2.65; OR ≥3 cups/day vs. none = 1.47, 95% CI = 0.81-2.66) odds ratio estimates of coffee drinking and relative telomere length were statistically significant. However, in the largest of the four contributing studies, moderate (<3 cups/day) and heavy coffee drinkers (≥3 cups/day) were 2.10 times (95% CI = 1.25, 3.54) and 1.93 times as likely (95% CI = 1.17, 3.18) as nondrinkers to have above-median telomere length, respectively. In conclusion, we found no evidence that coffee drinking is associated with telomere length. Thus, it is unlikely that telomere length plays a role in potential coffee-disease associations.


1q21.1 deletion and a rare functional polymorphism in siblings with thrombocytopenia-absent radius-like phenotypes.

  • Seth A Brodie‎ et al.
  • Cold Spring Harbor molecular case studies‎
  • 2019‎

Thrombocytopenia-absent radii (TAR) syndrome, characterized by neonatal thrombocytopenia and bilateral radial aplasia with thumbs present, is typically caused by the inheritance of a 1q21.1 deletion and a single-nucelotide polymorphism in RBM8A on the nondeleted allele. We evaluated two siblings with TAR-like dysmorphology but lacking thrombocytopenia in infancy. Family NCI-107 participated in an IRB-approved cohort study and underwent comprehensive clinical and genomic evaluations, including aCGH, whole-exome, whole-genome, and targeted sequencing. Gene expression assays and electromobility shift assays (EMSAs) were performed to evaluate the variant of interest. The previously identified TAR-associated 1q21.1 deletion was present in the affected siblings and one healthy parent. Multiple sequencing approaches did not identify previously described TAR-associated SNPs or mutations in relevant genes. We discovered rs61746197 A > G heterozygosity in the parent without the deletion and apparent hemizygosity in both siblings. rs61746197 A > G overlaps a RelA-p65 binding motif, and EMSAs indicate the A allele has higher transcription factor binding efficiency than the G allele. Stimulation of K562 cells to induce megakaryocyte differentiation abrogated the shift of both reference and alternative probes. The 1q21.1 TAR-associated deletion in combination with the G variant of rs61746197 on the nondeleted allele is associated with a TAR-like phenotype. rs61746197 G could be a functional enhancer/repressor element, but more studies are required to identify the specific factor(s) responsible. Overall, our findings suggest a role of rs61746197 A > G and human disease in the setting of a 1q21.1 deletion on the other chromosome.


RTEL1 influences the abundance and localization of TERRA RNA.

  • Fiorella Ghisays‎ et al.
  • Nature communications‎
  • 2021‎

Telomere repeat containing RNAs (TERRAs) are a family of long non-coding RNAs transcribed from the subtelomeric regions of eukaryotic chromosomes. TERRA transcripts can form R-loops at chromosome ends; however the importance of these structures or the regulation of TERRA expression and retention in telomeric R-loops remain unclear. Here, we show that the RTEL1 (Regulator of Telomere Length 1) helicase influences the abundance and localization of TERRA in human cells. Depletion of RTEL1 leads to increased levels of TERRA RNA while reducing TERRA-containing R loops at telomeres. In vitro, RTEL1 shows a strong preference for binding G-quadruplex structures which form in TERRA. This binding is mediated by the C-terminal region of RTEL1, and is independent of the RTEL1 helicase domain. RTEL1 binding to TERRA appears to be essential for cell viability, underscoring the importance of this function. Degradation of TERRA-containing R-loops by overexpression of RNAse H1 partially recapitulates the increased TERRA levels and telomeric instability associated with RTEL1 deficiency. Collectively, these data suggest that regulation of TERRA is a key function of the RTEL1 helicase, and that loss of that function may contribute to the disease phenotypes of patients with RTEL1 mutations.


Shwachman Diamond syndrome: narrow genotypic spectrum and variable clinical features.

  • Ashley S Thompson‎ et al.
  • Pediatric research‎
  • 2022‎

Shwachman Diamond syndrome (SDS) is an inherited bone marrow failure syndrome (IBMFS) associated with pancreatic insufficiency, neutropenia, and skeletal dysplasia. Biallelic pathogenic variants (PV) in SBDS account for >90% of SDS. We hypothesized that the SDS phenotype varies based on genotype and conducted a genotype-phenotype correlation study to better understand these complexities.


Genetic regulation of OAS1 nonsense-mediated decay underlies association with COVID-19 hospitalization in patients of European and African ancestries.

  • A Rouf Banday‎ et al.
  • Nature genetics‎
  • 2022‎

The chr12q24.13 locus encoding OAS1-OAS3 antiviral proteins has been associated with coronavirus disease 2019 (COVID-19) susceptibility. Here, we report genetic, functional and clinical insights into this locus in relation to COVID-19 severity. In our analysis of patients of European (n = 2,249) and African (n = 835) ancestries with hospitalized versus nonhospitalized COVID-19, the risk of hospitalized disease was associated with a common OAS1 haplotype, which was also associated with reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) clearance in a clinical trial with pegIFN-λ1. Bioinformatic analyses and in vitro studies reveal the functional contribution of two associated OAS1 exonic variants comprising the risk haplotype. Derived human-specific alleles rs10774671-A and rs1131454 -A decrease OAS1 protein abundance through allele-specific regulation of splicing and nonsense-mediated decay (NMD). We conclude that decreased OAS1 expression due to a common haplotype contributes to COVID-19 severity. Our results provide insight into molecular mechanisms through which early treatment with interferons could accelerate SARS-CoV-2 clearance and mitigate against severe COVID-19.


Characterization of large structural genetic mosaicism in human autosomes.

  • Mitchell J Machiela‎ et al.
  • American journal of human genetics‎
  • 2015‎

Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb) structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals (total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism (n = 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value = 5.5 × 10(-31)) and is higher in men (p value = 0.002) but lower in participants of African ancestry (p value = 0.003). In a subset of 47 individuals from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in the aging population.


A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma.

  • Maria Teresa Landi‎ et al.
  • American journal of human genetics‎
  • 2009‎

Three genetic loci for lung cancer risk have been identified by genome-wide association studies (GWAS), but inherited susceptibility to specific histologic types of lung cancer is not well established. We conducted a GWAS of lung cancer and its major histologic types, genotyping 515,922 single-nucleotide polymorphisms (SNPs) in 5739 lung cancer cases and 5848 controls from one population-based case-control study and three cohort studies. Results were combined with summary data from ten additional studies, for a total of 13,300 cases and 19,666 controls of European descent. Four studies also provided histology data for replication, resulting in 3333 adenocarcinomas (AD), 2589 squamous cell carcinomas (SQ), and 1418 small cell carcinomas (SC). In analyses by histology, rs2736100 (TERT), on chromosome 5p15.33, was associated with risk of adenocarcinoma (odds ratio [OR]=1.23, 95% confidence interval [CI]=1.13-1.33, p=3.02x10(-7)), but not with other histologic types (OR=1.01, p=0.84 and OR=1.00, p=0.93 for SQ and SC, respectively). This finding was confirmed in each replication study and overall meta-analysis (OR=1.24, 95% CI=1.17-1.31, p=3.74x10(-14) for AD; OR=0.99, p=0.69 and OR=0.97, p=0.48 for SQ and SC, respectively). Other previously reported association signals on 15q25 and 6p21 were also refined, but no additional loci reached genome-wide significance. In conclusion, a lung cancer GWAS identified a distinct hereditary contribution to adenocarcinoma.


Genome-wide association study identifies two susceptibility loci for osteosarcoma.

  • Sharon A Savage‎ et al.
  • Nature genetics‎
  • 2013‎

Osteosarcoma is the most common primary bone malignancy of adolescents and young adults. To better understand the genetic etiology of osteosarcoma, we performed a multistage genome-wide association study consisting of 941 individuals with osteosarcoma (cases) and 3,291 cancer-free adult controls of European ancestry. Two loci achieved genome-wide significance: a locus in the GRM4 gene at 6p21.3 (encoding glutamate receptor metabotropic 4; rs1906953; P = 8.1 × 10⁻⁹) and a locus in the gene desert at 2p25.2 (rs7591996 and rs10208273; P = 1.0 × 10⁻⁸ and 2.9 × 10⁻⁷, respectively). These two loci warrant further exploration to uncover the biological mechanisms underlying susceptibility to osteosarcoma.


The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response.

  • Jan Karlseder‎ et al.
  • PLoS biology‎
  • 2004‎

The telomeric protein TRF2 is required to prevent mammalian telomeres from activating DNA damage checkpoints. Here we show that overexpression of TRF2 affects the response of the ATM kinase to DNA damage. Overexpression of TRF2 abrogated the cell cycle arrest after ionizing radiation and diminished several other readouts of the DNA damage response, including phosphorylation of Nbs1, induction of p53, and upregulation of p53 targets. TRF2 inhibited autophosphorylation of ATM on S1981, an early step in the activation of this kinase. A region of ATM containing S1981 was found to directly interact with TRF2 in vitro, and ATM immunoprecipitates contained TRF2. We propose that TRF2 has the ability to inhibit ATM activation at telomeres. Because TRF2 is abundant at chromosome ends but not elsewhere in the nucleus, this mechanism of checkpoint control could specifically block a DNA damage response at telomeres without affecting the surveillance of chromosome internal damage.


The Rad50 coiled-coil domain is indispensable for Mre11 complex functions.

  • Marcel Hohl‎ et al.
  • Nature structural & molecular biology‎
  • 2011‎

The Mre11 complex (Mre11, Rad50 and Xrs2 in Saccharomyces cerevisiae) influences diverse functions in the DNA damage response. The complex comprises the globular DNA-binding domain and the Rad50 hook domain, which are linked by a long and extended Rad50 coiled-coil domain. In this study, we constructed rad50 alleles encoding truncations of the coiled-coil domain to determine which Mre11 complex functions required the full length of the coils. These mutations abolished telomere maintenance and meiotic double-strand break (DSB) formation, and severely impaired homologous recombination, indicating a requirement for long-range action. Nonhomologous end joining, which is probably mediated by the globular domain of the Mre11 complex, was also severely impaired by alteration of the coiled-coil and hook domains, providing the first evidence of their influence on this process. These data show that functions of Mre11 complex are integrated by the coiled coils of Rad50.


Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma.

  • Jianxin Shi‎ et al.
  • Nature genetics‎
  • 2014‎

Although CDKN2A is the most frequent high-risk melanoma susceptibility gene, the underlying genetic factors for most melanoma-prone families remain unknown. Using whole-exome sequencing, we identified a rare variant that arose as a founder mutation in the telomere shelterin gene POT1 (chromosome 7, g.124493086C>T; p.Ser270Asn) in five unrelated melanoma-prone families from Romagna, Italy. Carriers of this variant had increased telomere lengths and numbers of fragile telomeres, suggesting that this variant perturbs telomere maintenance. Two additional rare POT1 variants were identified in all cases sequenced in two separate Italian families, one variant per family, yielding a frequency for POT1 variants comparable to that for CDKN2A mutations in this population. These variants were not found in public databases or in 2,038 genotyped Italian controls. We also identified two rare recurrent POT1 variants in US and French familial melanoma cases. Our findings suggest that POT1 is a major susceptibility gene for familial melanoma in several populations.


The Rad50 hook domain regulates DNA damage signaling and tumorigenesis.

  • Ramon Roset‎ et al.
  • Genes & development‎
  • 2014‎

The Mre11 complex (Mre11, Rad50, and Nbs1) is a central component of the DNA damage response (DDR), governing both double-strand break repair and DDR signaling. Rad50 contains a highly conserved Zn(2+)-dependent homodimerization interface, the Rad50 hook domain. Mutations that inactivate the hook domain produce a null phenotype. In this study, we analyzed mutants with reduced hook domain function in an effort to stratify hook-dependent Mre11 complex functions. One of these alleles, Rad50(46), conferred reduced Zn(2+) affinity and dimerization efficiency. Homozygous Rad50(46/46) mutations were lethal in mice. However, in the presence of wild-type Rad50, Rad50(46) exerted a dominant gain-of-function phenotype associated with chronic DDR signaling. At the organismal level, Rad50(+/46) exhibited hydrocephalus, liver tumorigenesis, and defects in primitive hematopoietic and gametogenic cells. These outcomes were dependent on ATM, as all phenotypes were mitigated in Rad50(+/46) Atm(+/-) mice. These data reveal that the murine Rad50 hook domain strongly influences Mre11 complex-dependent DDR signaling, tissue homeostasis, and tumorigenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: