Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 22 papers

TRF2 recruits RTEL1 to telomeres in S phase to promote t-loop unwinding.

  • Grzegorz Sarek‎ et al.
  • Molecular cell‎
  • 2015‎

The helicase RTEL1 promotes t-loop unwinding and suppresses telomere fragility to maintain the integrity of vertebrate telomeres. An interaction between RTEL1 and PCNA is important to prevent telomere fragility, but how RTEL1 engages with the telomere to promote t-loop unwinding is unclear. Here, we establish that the shelterin protein TRF2 recruits RTEL1 to telomeres in S phase, which is required to prevent catastrophic t-loop processing by structure-specific nucleases. We show that the TRF2-RTEL1 interaction is mediated by a metal-coordinating C4C4 motif in RTEL1, which is compromised by the Hoyeraal-Hreidarsson syndrome (HHS) mutation, RTEL1(R1264H). Conversely, we define a TRF2(I124D) substitution mutation within the TRFH domain of TRF2, which eliminates RTEL1 binding and phenocopies the RTEL1(R1264H) mutation, giving rise to aberrant t-loop excision, telomere length heterogeneity, and loss of the telomere as a circle. These results implicate TRF2 in the recruitment of RTEL1 to facilitate t-loop disassembly at telomeres in S phase.


ZIP4H (TEX11) deficiency in the mouse impairs meiotic double strand break repair and the regulation of crossing over.

  • Carrie A Adelman‎ et al.
  • PLoS genetics‎
  • 2008‎

We have recently shown that hypomorphic Mre11 complex mouse mutants exhibit defects in the repair of meiotic double strand breaks (DSBs). This is associated with perturbation of synaptonemal complex morphogenesis, repair and regulation of crossover formation. To further assess the Mre11 complex's role in meiotic progression, we identified testis-specific NBS1-interacting proteins via two-hybrid screening in yeast. In this screen, Zip4h (Tex11), a male germ cell specific X-linked gene was isolated. Based on sequence and predicted structural similarity to the S. cerevisiae and A. thaliana Zip4 orthologs, ZIP4H appears to be the mammalian ortholog. In S. cerevisiae and A. thaliana, Zip4 is a meiosis-specific protein that regulates the level of meiotic crossovers, thus influencing homologous chromosome segregation in these organisms. As is true for hypomorphic Nbs1 (Nbs1(DeltaB/DeltaB)) mice, Zip4h(-/Y) mutant mice were fertile. Analysis of spermatocytes revealed a delay in meiotic double strand break repair and decreased crossover formation as inferred from DMC1 and MLH1 staining patterns, respectively. Achiasmate chromosomes at the first meiotic division were also observed in Zip4h(-/Y) mutants, consistent with the observed reduction in MLH1 focus formation. These results indicate that meiotic functions of Zip4 family members are conserved and support the view that the Mre11 complex and ZIP4H interact functionally during the execution of the meiotic program in mammals.


RTEL1 influences the abundance and localization of TERRA RNA.

  • Fiorella Ghisays‎ et al.
  • Nature communications‎
  • 2021‎

Telomere repeat containing RNAs (TERRAs) are a family of long non-coding RNAs transcribed from the subtelomeric regions of eukaryotic chromosomes. TERRA transcripts can form R-loops at chromosome ends; however the importance of these structures or the regulation of TERRA expression and retention in telomeric R-loops remain unclear. Here, we show that the RTEL1 (Regulator of Telomere Length 1) helicase influences the abundance and localization of TERRA in human cells. Depletion of RTEL1 leads to increased levels of TERRA RNA while reducing TERRA-containing R loops at telomeres. In vitro, RTEL1 shows a strong preference for binding G-quadruplex structures which form in TERRA. This binding is mediated by the C-terminal region of RTEL1, and is independent of the RTEL1 helicase domain. RTEL1 binding to TERRA appears to be essential for cell viability, underscoring the importance of this function. Degradation of TERRA-containing R-loops by overexpression of RNAse H1 partially recapitulates the increased TERRA levels and telomeric instability associated with RTEL1 deficiency. Collectively, these data suggest that regulation of TERRA is a key function of the RTEL1 helicase, and that loss of that function may contribute to the disease phenotypes of patients with RTEL1 mutations.


The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response.

  • Jan Karlseder‎ et al.
  • PLoS biology‎
  • 2004‎

The telomeric protein TRF2 is required to prevent mammalian telomeres from activating DNA damage checkpoints. Here we show that overexpression of TRF2 affects the response of the ATM kinase to DNA damage. Overexpression of TRF2 abrogated the cell cycle arrest after ionizing radiation and diminished several other readouts of the DNA damage response, including phosphorylation of Nbs1, induction of p53, and upregulation of p53 targets. TRF2 inhibited autophosphorylation of ATM on S1981, an early step in the activation of this kinase. A region of ATM containing S1981 was found to directly interact with TRF2 in vitro, and ATM immunoprecipitates contained TRF2. We propose that TRF2 has the ability to inhibit ATM activation at telomeres. Because TRF2 is abundant at chromosome ends but not elsewhere in the nucleus, this mechanism of checkpoint control could specifically block a DNA damage response at telomeres without affecting the surveillance of chromosome internal damage.


The Rad50 coiled-coil domain is indispensable for Mre11 complex functions.

  • Marcel Hohl‎ et al.
  • Nature structural & molecular biology‎
  • 2011‎

The Mre11 complex (Mre11, Rad50 and Xrs2 in Saccharomyces cerevisiae) influences diverse functions in the DNA damage response. The complex comprises the globular DNA-binding domain and the Rad50 hook domain, which are linked by a long and extended Rad50 coiled-coil domain. In this study, we constructed rad50 alleles encoding truncations of the coiled-coil domain to determine which Mre11 complex functions required the full length of the coils. These mutations abolished telomere maintenance and meiotic double-strand break (DSB) formation, and severely impaired homologous recombination, indicating a requirement for long-range action. Nonhomologous end joining, which is probably mediated by the globular domain of the Mre11 complex, was also severely impaired by alteration of the coiled-coil and hook domains, providing the first evidence of their influence on this process. These data show that functions of Mre11 complex are integrated by the coiled coils of Rad50.


The Rad50 hook domain regulates DNA damage signaling and tumorigenesis.

  • Ramon Roset‎ et al.
  • Genes & development‎
  • 2014‎

The Mre11 complex (Mre11, Rad50, and Nbs1) is a central component of the DNA damage response (DDR), governing both double-strand break repair and DDR signaling. Rad50 contains a highly conserved Zn(2+)-dependent homodimerization interface, the Rad50 hook domain. Mutations that inactivate the hook domain produce a null phenotype. In this study, we analyzed mutants with reduced hook domain function in an effort to stratify hook-dependent Mre11 complex functions. One of these alleles, Rad50(46), conferred reduced Zn(2+) affinity and dimerization efficiency. Homozygous Rad50(46/46) mutations were lethal in mice. However, in the presence of wild-type Rad50, Rad50(46) exerted a dominant gain-of-function phenotype associated with chronic DDR signaling. At the organismal level, Rad50(+/46) exhibited hydrocephalus, liver tumorigenesis, and defects in primitive hematopoietic and gametogenic cells. These outcomes were dependent on ATM, as all phenotypes were mitigated in Rad50(+/46) Atm(+/-) mice. These data reveal that the murine Rad50 hook domain strongly influences Mre11 complex-dependent DDR signaling, tissue homeostasis, and tumorigenesis.


Mouse DCUN1D1 (SCCRO) is required for spermatogenetic individualization.

  • Guochang Huang‎ et al.
  • PloS one‎
  • 2019‎

Squamous cell carcinoma-related oncogene (SCCRO, also known as DCUN1D1) is a component of the E3 for neddylation. As such, DCUN1D1 regulates the neddylation of cullin family members. Targeted inactivation of DCUN1D1 in mice results in male-specific infertility. Infertility in DCUN1D1-/- mice is secondary to primary defects in spermatogenesis. Time-dam experiments mapped the onset of the defect in spermatogenesis to 5.5 to 6 weeks of age, which temporally corresponds to defects in spermiogenesis. Although the first round of spermatogenesis progressed normally, the number of spermatozoa released into the seminiferous lumen and epididymis of DCUN1D1-/- mice was significantly reduced. Spermatozoa in DCUN1D1-/- mice had multiple abnormalities, including globozoospermia, macrocephaly, and multiple flagella. Many of the malformed spermatozoa in DCUN1D1-/- mice were multinucleated, with supernumerary and malpositioned centrioles, suggesting a defect in the resolution of intercellular bridges. The onset of the defect in spermatogenesis in DCUN1D1-/- mice corresponds to an increase in DCUN1D1 expression observed during normal spermatogenesis. Moreover, consistent with its known function as a component of the E3 in neddylation, the pattern of DCUN1D1 expression temporally correlates with an increase in the neddylated cullin fraction and stage-specific increases in the total ubiquitinated protein pool in wild-type mice. Levels of neddylated Cul3 were decreased in DCUN1D1-/- mice, and ubiquitinated proteins did not accumulate during the stages in which DCUN1D1 expression peaks during spermatogenesis in wild-type mice. Combined, these findings suggest that DCUN1D1-/- mice fail to release mature spermatozoa into the seminiferous lumen, possibly due to unresolved intercellular bridges. Furthermore, the effects of DCUN1D1 on spermatogenesis likely involve its regulation of cullin-RING-ligase (CRL)-type ubiquitin E3 activity during spermiogenesis through its role in promoting Cul3 neddylation. The specific CRLs required for spermiogenesis and their protein targets require identification.


Modeling cancer genomic data in yeast reveals selection against ATM function during tumorigenesis.

  • Marcel Hohl‎ et al.
  • PLoS genetics‎
  • 2020‎

The DNA damage response (DDR) comprises multiple functions that collectively preserve genomic integrity and suppress tumorigenesis. The Mre11 complex and ATM govern a major axis of the DDR and several lines of evidence implicate that axis in tumor suppression. Components of the Mre11 complex are mutated in approximately five percent of human cancers. Inherited mutations of complex members cause severe chromosome instability syndromes, such as Nijmegen Breakage Syndrome, which is associated with strong predisposition to malignancy. And in mice, Mre11 complex mutations are markedly more susceptible to oncogene- induced carcinogenesis. The complex is integral to all modes of DNA double strand break (DSB) repair and is required for the activation of ATM to effect DNA damage signaling. To understand which functions of the Mre11 complex are important for tumor suppression, we undertook mining of cancer genomic data from the clinical sequencing program at Memorial Sloan Kettering Cancer Center, which includes the Mre11 complex among the 468 genes assessed. Twenty five mutations in MRE11 and RAD50 were modeled in S. cerevisiae and in vitro. The mutations were chosen based on recurrence and conservation between human and yeast. We found that a significant fraction of tumor-borne RAD50 and MRE11 mutations exhibited separation of function phenotypes wherein Tel1/ATM activation was severely impaired while DNA repair functions were mildly or not affected. At the molecular level, the gene products of RAD50 mutations exhibited defects in ATP binding and hydrolysis. The data reflect the importance of Rad50 ATPase activity for Tel1/ATM activation and suggest that inactivation of ATM signaling confers an advantage to burgeoning tumor cells.


A Disease-Causing Single Amino Acid Deletion in the Coiled-Coil Domain of RAD50 Impairs MRE11 Complex Functions in Yeast and Humans.

  • Marie Chansel-Da Cruz‎ et al.
  • Cell reports‎
  • 2020‎

The MRE11-RAD50-NBS1 complex plays a central role in response to DNA double-strand breaks. Here, we identify a patient with bone marrow failure and developmental defects caused by biallelic RAD50 mutations. One of the mutations creates a null allele, whereas the other (RAD50E1035Δ) leads to the loss of a single residue in the heptad repeats within the RAD50 coiled-coil domain. This mutation represents a human RAD50 separation-of-function mutation that impairs DNA repair, DNA replication, and DNA end resection without affecting ATM-dependent DNA damage response. Purified recombinant proteins indicate that RAD50E1035Δ impairs MRE11 nuclease activity. The corresponding mutation in Saccharomyces cerevisiae causes severe thermosensitive defects in both DNA repair and Tel1ATM-dependent signaling. These findings demonstrate that a minor heptad break in the RAD50 coiled coil suffices to impede MRE11 complex functions in human and yeast. Furthermore, these results emphasize the importance of the RAD50 coiled coil to regulate MRE11-dependent DNA end resection in humans.


Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes.

  • Sachin Katyal‎ et al.
  • Nature neuroscience‎
  • 2014‎

DNA damage is considered to be a prime factor in several spinocerebellar neurodegenerative diseases; however, the DNA lesions underpinning disease etiology are unknown. We observed the endogenous accumulation of pathogenic topoisomerase-1 (Top1)-DNA cleavage complexes (Top1ccs) in murine models of ataxia telangiectasia and spinocerebellar ataxia with axonal neuropathy 1. We found that the defective DNA damage response factors in these two diseases cooperatively modulated Top1cc turnover in a non-epistatic and ATM kinase-independent manner. Furthermore, coincident neural inactivation of ATM and DNA single-strand break repair factors, including tyrosyl-DNA phosphodiesterase-1 or XRCC1, resulted in increased Top1cc formation and excessive DNA damage and neurodevelopmental defects. Notably, direct Top1 poisoning to elevate Top1cc levels phenocopied the neuropathology of the mouse models described above. Our results identify a critical endogenous pathogenic lesion associated with neurodegenerative syndromes arising from DNA repair deficiency, indicating that genome integrity is important for preventing disease in the nervous system.


Chemical genetics reveals a specific requirement for Cdk2 activity in the DNA damage response and identifies Nbs1 as a Cdk2 substrate in human cells.

  • Lara Wohlbold‎ et al.
  • PLoS genetics‎
  • 2012‎

The cyclin-dependent kinases (CDKs) that promote cell-cycle progression are targets for negative regulation by signals from damaged or unreplicated DNA, but also play active roles in response to DNA lesions. The requirement for activity in the face of DNA damage implies that there are mechanisms to insulate certain CDKs from checkpoint inhibition. It remains difficult, however, to assign precise functions to specific CDKs in protecting genomic integrity. In mammals, Cdk2 is active throughout S and G2 phases, but Cdk2 protein is dispensable for survival, owing to compensation by other CDKs. That plasticity obscured a requirement for Cdk2 activity in proliferation of human cells, which we uncovered by replacement of wild-type Cdk2 with a mutant version sensitized to inhibition by bulky adenine analogs. Here we show that transient, selective inhibition of analog-sensitive (AS) Cdk2 after exposure to ionizing radiation (IR) enhances cell-killing. In extracts supplemented with an ATP analog used preferentially by AS kinases, Cdk2(as) phosphorylated the Nijmegen Breakage Syndrome gene product Nbs1-a component of the conserved Mre11-Rad50-Nbs1 complex required for normal DNA damage repair and checkpoint signaling-dependent on a consensus CDK recognition site at Ser432. In vivo, selective inhibition of Cdk2 delayed and diminished Nbs1-Ser432 phosphorylation during S phase, and mutation of Ser432 to Ala or Asp increased IR-sensitivity. Therefore, by chemical genetics, we uncovered both a non-redundant requirement for Cdk2 activity in response to DNA damage and a specific target of Cdk2 within the DNA repair machinery.


Functions of the MRE11 complex in the development and maintenance of oocytes.

  • Akiko Inagaki‎ et al.
  • Chromosoma‎
  • 2016‎

The MRE11 complex (MRE11, RAD50, and NBS1) is a central component of the DNA damage response, governing both double-strand break repair and DNA damage response signaling. To determine the functions of the MRE11 complex in the development and maintenance of oocytes, we analyzed ovarian phenotypes of mice harboring the hypomorphic Mre11 (ATLD1) allele. Mre11 (ATLD1/ATLD1) females exhibited premature oocyte elimination attributable to defects in homologous chromosome pairing and double-strand break repair during meiotic prophase. Other aspects of meiotic progression, including attachment of telomeres to the nuclear envelope and recruitment of RAD21L, a component of the meiotic cohesin complex to the synaptonemal complex, were normal. Unlike Dmc1 (-/-) and Trp13 (Gt/Gt) mice which exhibit comparable defects in double-strand break repair and oocyte depletion by 5 days post-partum, we found that oocyte attrition occurred by 12 weeks in Mre11 (ATLD1/ATLD1) . Disruption of the oocyte checkpoint pathway governed by Chk2 gene further enhanced the survival of Mre11 (ATLD1/ATLD1) follicles. Together our data suggest that the MRE11 complex influences the elimination of oocytes with unrepaired meiotic double-strand breaks post-natally, in addition to its previously described role in double-strand break repair and homologous synapsis during female meiosis.


Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway.

  • Courtney A Lovejoy‎ et al.
  • PLoS genetics‎
  • 2012‎

The Alternative Lengthening of Telomeres (ALT) pathway is a telomerase-independent pathway for telomere maintenance that is active in a significant subset of human cancers and in vitro immortalized cell lines. ALT is thought to involve templated extension of telomeres through homologous recombination, but the genetic or epigenetic changes that unleash ALT are not known. Recently, mutations in the ATRX/DAXX chromatin remodeling complex and histone H3.3 were found to correlate with features of ALT in pancreatic neuroendocrine cancers, pediatric glioblastomas, and other tumors of the central nervous system, suggesting that these mutations might contribute to the activation of the ALT pathway in these cancers. We have taken a comprehensive approach to deciphering ALT by applying genomic, molecular biological, and cell biological approaches to a panel of 22 ALT cell lines, including cell lines derived in vitro. Here we show that loss of ATRX protein and mutations in the ATRX gene are hallmarks of ALT-immortalized cell lines. In addition, ALT is associated with extensive genome rearrangements, marked micronucleation, defects in the G2/M checkpoint, and altered double-strand break (DSB) repair. These attributes will facilitate the diagnosis and treatment of ALT positive human cancers.


The structure-selective endonucleases GEN1 and MUS81 mediate complementary functions in safeguarding the genome of proliferating B lymphocytes.

  • Keith Conrad Fernandez‎ et al.
  • eLife‎
  • 2022‎

During the development of humoral immunity, activated B lymphocytes undergo vigorous proliferative, transcriptional, metabolic, and DNA remodeling activities; hence, their genomes are constantly exposed to an onslaught of genotoxic agents and processes. Branched DNA intermediates generated during replication and recombinational repair pose genomic threats if left unresolved and so, they must be eliminated by structure-selective endonucleases to preserve the integrity of these DNA transactions for the faithful duplication and propagation of genetic information. To investigate the role of two such enzymes, GEN1 and MUS81, in B cell biology, we established B-cell conditional knockout mouse models and found that deletion of GEN1 and MUS81 in early B-cell precursors abrogates the development and maturation of B-lineage cells while the loss of these enzymes in mature B cells inhibit the generation of robust germinal centers. Upon activation, these double-null mature B lymphocytes fail to proliferate and survive while exhibiting transcriptional signatures of p53 signaling, apoptosis, and type I interferon response. Metaphase spreads of these endonuclease-deficient cells showed severe and diverse chromosomal abnormalities, including a preponderance of chromosome breaks, consistent with a defect in resolving recombination intermediates. These observations underscore the pivotal roles of GEN1 and MUS81 in safeguarding the genome to ensure the proper development and proliferation of B lymphocytes.


Eukaryotic Rad50 functions as a rod-shaped dimer.

  • Young Bong Park‎ et al.
  • Nature structural & molecular biology‎
  • 2017‎

The Rad50 hook interface is crucial for assembly and various functions of the Mre11 complex. Previous analyses suggested that Rad50 molecules interact within (intracomplex) or between (intercomplex) dimeric complexes. In this study, we determined the structure of the human Rad50 hook and coiled-coil domains. The data suggest that the predominant structure is the intracomplex, in which the two parallel coiled coils proximal to the hook form a rod shape, and that a novel interface within the coiled-coil domains of Rad50 stabilizes the interaction of Rad50 protomers in the dimeric assembly. In yeast, removal of the coiled-coil interface compromised Tel1 activation without affecting DNA repair, while simultaneous disruption of that interface and the hook phenocopied a null mutation. The results demonstrate that the hook and coiled-coil interfaces coordinately promote intracomplex assembly and define the intracomplex as the functional form of the Mre11 complex.


The Mre11-Nbs1 Interface Is Essential for Viability and Tumor Suppression.

  • Jun Hyun Kim‎ et al.
  • Cell reports‎
  • 2017‎

The Mre11 complex (Mre11, Rad50, and Nbs1) is integral to both DNA repair and ataxia telangiectasia mutated (ATM)-dependent DNA damage signaling. All three Mre11 complex components are essential for viability at the cellular and organismal levels. To delineate essential and non-essential Mre11 complex functions that are mediated by Nbs1, we used TALEN-based genome editing to derive Nbs1 mutant mice (Nbs1mid mice), which harbor mutations in the Mre11 interaction domain of Nbs1. Nbs1mid alleles that abolished interaction were incompatible with viability. Conversely, a 108-amino-acid Nbs1 fragment comprising the Mre11 interface was sufficient to rescue viability and ATM activation in cultured cells and support differentiation of hematopoietic cells in vivo. These data indicate that the essential role of Nbs1 is via its interaction with Mre11 and that most of the Nbs1 protein is dispensable for Mre11 complex functions and suggest that Mre11 and Rad50 directly activate ATM.


Protocol for the quantitative identification of endogenously ISGylated proteins from mammalian cell lines.

  • Christopher P Wardlaw‎ et al.
  • STAR protocols‎
  • 2024‎

Ubiquitin-like protein ISG15 plays an important role in an array of cellular functions via its covalent attachment to target proteins (ISGylation). Here, we present a protocol for the identification of ISGylated proteins that avoids the caveats associated with ISG15 overexpression and minimizes the likelihood of false positives. We describe steps for the tagging of endogenous ISG15, followed by genotyping and clone selection. We then detail steps for ISGylation induction, the isolation of ISGylated proteins, and their identification via quantitative mass spectrometry. For complete details on the use and execution of this protocol, please refer to Wardlaw and Petrini.1.


Interdependence of the rad50 hook and globular domain functions.

  • Marcel Hohl‎ et al.
  • Molecular cell‎
  • 2015‎

Rad50 contains a conserved Zn(2+) coordination domain (the Rad50 hook) that functions as a homodimerization interface. Hook ablation phenocopies Rad50 deficiency in all respects. Here, we focused on rad50 mutations flanking the Zn(2+)-coordinating hook cysteines. These mutants impaired hook-mediated dimerization, but recombination between sister chromatids was largely unaffected. This may reflect that cohesin-mediated sister chromatid interactions are sufficient for double-strand break repair. However, Mre11 complex functions specified by the globular domain, including Tel1 (ATM) activation, nonhomologous end joining, and DNA double-strand break end resection were affected, suggesting that dimerization exerts a broad influence on Mre11 complex function. These phenotypes were suppressed by mutations within the coiled-coil and globular ATPase domains, suggesting a model in which conformational changes in the hook and globular domains are transmitted via the extended coils of Rad50. We propose that transmission of spatial information in this manner underlies the regulation of Mre11 complex functions.


A recessive founder mutation in regulator of telomere elongation helicase 1, RTEL1, underlies severe immunodeficiency and features of Hoyeraal Hreidarsson syndrome.

  • Bari J Ballew‎ et al.
  • PLoS genetics‎
  • 2013‎

Dyskeratosis congenita (DC) is a heterogeneous inherited bone marrow failure and cancer predisposition syndrome in which germline mutations in telomere biology genes account for approximately one-half of known families. Hoyeraal Hreidarsson syndrome (HH) is a clinically severe variant of DC in which patients also have cerebellar hypoplasia and may present with severe immunodeficiency and enteropathy. We discovered a germline autosomal recessive mutation in RTEL1, a helicase with critical telomeric functions, in two unrelated families of Ashkenazi Jewish (AJ) ancestry. The affected individuals in these families are homozygous for the same mutation, R1264H, which affects three isoforms of RTEL1. Each parent was a heterozygous carrier of one mutant allele. Patient-derived cell lines revealed evidence of telomere dysfunction, including significantly decreased telomere length, telomere length heterogeneity, and the presence of extra-chromosomal circular telomeric DNA. In addition, RTEL1 mutant cells exhibited enhanced sensitivity to the interstrand cross-linking agent mitomycin C. The molecular data and the patterns of inheritance are consistent with a hypomorphic mutation in RTEL1 as the underlying basis of the clinical and cellular phenotypes. This study further implicates RTEL1 in the etiology of DC/HH and immunodeficiency, and identifies the first known homozygous autosomal recessive disease-associated mutation in RTEL1.


Maintenance of the DNA-damage checkpoint requires DNA-damage-induced mediator protein oligomerization.

  • Takehiko Usui‎ et al.
  • Molecular cell‎
  • 2009‎

Oligomeric assembly of Brca1 C-terminal (BRCT) domain-containing mediator proteins occurs at sites of DNA damage. However, the functional significance and regulation of such assemblies are not well understood. In this study, we defined the molecular mechanism of DNA-damage-induced oligomerization of the S. cerevisiae BRCT protein Rad9. Our data suggest that Rad9's tandem BRCT domain mediates Rad9 oligomerization via its interaction with its own Mec1/Tel1-phosphorylated SQ/TQ cluster domain (SCD). Rad53 activation is unaffected by mutations that impair Rad9 oligomerization, but checkpoint maintenance is lost, indicating that oligomerization is required to sustain checkpoint signaling. Once activated, Rad53 phosphorylates the Rad9 BRCT domain, which attenuates the BRCT-SCD interaction. Failure to phosphorylate the Rad9 BRCT results in cytologically visible Rad9 foci. This suggests a feedback loop wherein Rad53 activity and Rad9 oligomerization are regulated to tune the DNA-damage response.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: