Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

A Sparse Probabilistic Code Underlies the Limits of Behavioral Discrimination.

  • Balaji Sriram‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2020‎

The cortical code that underlies perception must enable subjects to perceive the world at time scales relevant for behavior. We find that mice can integrate visual stimuli very quickly (<100 ms) to reach plateau performance in an orientation discrimination task. To define features of cortical activity that underlie performance at these time scales, we measured single-unit responses in the mouse visual cortex at time scales relevant to this task. In contrast to high-contrast stimuli of longer duration, which elicit reliable activity in individual neurons, stimuli at the threshold of perception elicit extremely sparse and unreliable responses in the primary visual cortex such that the activity of individual neurons does not reliably report orientation. Integrating information across neurons, however, quickly improves performance. Using a linear decoding model, we estimate that integrating information over 50-100 neurons is sufficient to account for behavioral performance. Thus, at the limits of visual perception, the visual system integrates information encoded in the probabilistic firing of unreliable single units to generate reliable behavior.


Imbalance between excitation and inhibition among synaptic connections of CA3 pyramidal neurons in cultured hippocampal slices.

  • Alberto Cruz-Martín‎ et al.
  • The European journal of neuroscience‎
  • 2008‎

A fundamental property of small neuronal ensembles is their ability to be selectively activated by distinct stimuli. One cellular mechanism by which neurons achieve this input selectivity is by modulating the temporal dynamics of excitation and inhibition. We explored the interplay of excitation and inhibition in synapses between pyramidal neurons of cornu ammonis field 3 of the hippocampal formation (CA3) in cultured rat hippocampal slices, where activation of a single excitatory cell can readily recruit local interneurons. Simultaneous whole-cell recordings from pairs of CA3 pyramidal neurons revealed that the strength of connections was neither uniform nor balanced. Rather, stimulation of presynaptic neurons elicited distinct combinations of excitatory postsynaptic current-inhibitory postsynaptic current (EPSC-IPSC) amplitudes in the postsynaptic neurons. EPSC-IPSC sequences with small EPSCs had large IPSCs and sequences that contained large EPSCs had small IPSCs. In addition to differences in the amplitudes of the responses, the kinetics of the EPSCs were also different, creating distinct temporal dynamics of excitation and inhibition. Weaker EPSCs had significantly slower kinetics and were efficiently occluded by IPSCs, thereby further limiting their contribution to depolarizing the postsynaptic membrane. Our data suggest that hippocampal pyramidal cells may use an imbalance between excitation and inhibition as a filter to enhance selectivity toward preferential excitatory connections.


Increased expression of schizophrenia-associated gene C4 leads to hypoconnectivity of prefrontal cortex and reduced social interaction.

  • Ashley L Comer‎ et al.
  • PLoS biology‎
  • 2020‎

Schizophrenia is a severe mental disorder with an unclear pathophysiology. Increased expression of the immune gene C4 has been linked to a greater risk of developing schizophrenia; however, it is not known whether C4 plays a causative role in this brain disorder. Using confocal imaging and whole-cell electrophysiology, we demonstrate that overexpression of C4 in mouse prefrontal cortex neurons leads to perturbations in dendritic spine development and hypoconnectivity, which mirror neuropathologies found in schizophrenia patients. We find evidence that microglia-mediated synaptic engulfment is enhanced with increased expression of C4. We also show that C4-dependent circuit dysfunction in the frontal cortex leads to decreased social interactions in juvenile and adult mice. These results demonstrate that increased expression of the schizophrenia-associated gene C4 causes aberrant circuit wiring in the developing prefrontal cortex and leads to deficits in juvenile and adult social behavior, suggesting that altered C4 expression contributes directly to schizophrenia pathogenesis.


Sex Differences in Behavioral and Brainstem Transcriptomic Neuroadaptations following Neonatal Opioid Exposure in Outbred Mice.

  • Kristyn N Borrelli‎ et al.
  • eNeuro‎
  • 2021‎

The opioid epidemic led to an increase in the number of neonatal opioid withdrawal syndrome (NOWS) cases in infants born to opioid-dependent mothers. Hallmark features of NOWS include weight loss, severe irritability, respiratory problems, and sleep fragmentation. Mouse models provide an opportunity to identify brain mechanisms that contribute to NOWS. Neonatal outbred Swiss Webster Cartworth Farms White (CFW) mice were administered morphine (15 mg/kg, s.c.) twice daily from postnatal day 1 (P1) to P14, an approximation of the third trimester of human gestation. Female and male mice underwent behavioral testing on P7 and P14 to determine the impact of opioid exposure on anxiety and pain sensitivity. Ultrasonic vocalizations (USVs) and daily body weights were also recorded. Brainstems containing pons and medulla were collected during morphine withdrawal on P14 for RNA sequencing. Morphine induced weight loss from P2 to P14, which persisted during adolescence (P21) and adulthood (P50). USVs markedly increased at P7 in females, emerging earlier than males. On P7 and P14, both morphine-exposed female and male mice displayed hyperalgesia on the hot plate and tail-flick assays, with females showing greater hyperalgesia than males. Morphine-exposed mice exhibited increased anxiety-like behavior in the open-field arena on P21. Transcriptome analysis of the brainstem, an area implicated in opioid withdrawal and NOWS, identified pathways enriched for noradrenergic signaling in females and males. We also found sex-specific pathways related to mitochondrial function and neurodevelopment in females and circadian entrainment in males. Sex-specific transcriptomic neuroadaptations implicate unique neurobiological mechanisms underlying NOWS-like behaviors.


Glutamate induces the elongation of early dendritic protrusions via mGluRs in wild type mice, but not in fragile X mice.

  • Alberto Cruz-Martín‎ et al.
  • PloS one‎
  • 2012‎

Fragile X syndrome (FXS), the most common inherited from of autism and mental impairment, is caused by transcriptional silencing of the Fmr1 gene, resulting in the loss of the RNA-binding protein FMRP. Dendritic spines of cortical pyramidal neurons in affected individuals are abnormally immature and in Fmr1 knockout (KO) mice they are also abnormally unstable. This could result in defects in synaptogenesis, because spine dynamics are critical for synapse formation. We have previously shown that the earliest dendritic protrusions, which are highly dynamic and might serve an exploratory role to reach out for axons, elongate in response to glutamate. Here, we tested the hypothesis that this process is mediated by metabotropic glutamate receptors (mGluRs) and that it is defective in Fmr1 KO mice. Using time-lapse imaging with two-photon microscopy in acute brain slices from early postnatal mice, we find that early dendritic protrusions in layer 2/3 neurons become longer in response to application of glutamate or DHPG, a Group 1 mGluR agonist. Blockade of mGluR5 signaling, which reverses some adult phenotypes of KO mice, prevented the glutamate-mediated elongation of early protrusions. In contrast, dendritic protrusions from KO mice failed to respond to glutamate. Thus, absence of FMRP may impair the ability of cortical pyramidal neurons to respond to glutamate released from nearby pre-synaptic terminals, which may be a critical step to initiate synaptogenesis and stabilize spines.


Microtubule plus-end tracking protein CLASP2 regulates neuronal polarity and synaptic function.

  • Uwe Beffert‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2012‎

Microtubule organization and dynamics are essential during axon and dendrite formation and maintenance in neurons. However, little is known about the regulation of microtubule dynamics during synaptic development and function in mammalian neurons. Here, we present evidence that the microtubule plus-end tracking protein CLASP2 (cytoplasmic linker associated protein 2) is a key regulator of axon and dendrite outgrowth that leads to functional alterations in synaptic activity and formation. We found that CLASP2 protein levels steadily increase throughout neuronal development in the mouse brain and are specifically enriched at the growth cones of extending neurites. The short-hairpin RNA-mediated knockdown of CLASP2 in primary mouse neurons decreased axon and dendritic length, whereas overexpression of human CLASP2 caused the formation of multiple axons, enhanced dendritic branching, and Golgi condensation, implicating CLASP2 in neuronal morphogenesis. In addition, the CLASP2-induced morphological changes led to significant functional alterations in synaptic transmission. CLASP2 overexpression produced a large increase in spontaneous miniature event frequency that was specific to excitatory neurotransmitter release. The changes in presynaptic activity produced by CLASP2 overexpression were accompanied by increases in presynaptic terminal circumference, total synapse number, and a selective increase in presynaptic proteins that are involved in neurotransmitter release. Also, we found a smaller increase in miniature event amplitude that was accompanied by an increase in postsynaptic surface expression of GluA1 receptor localization. Together, these results provide evidence for involvement of the microtubule plus-end tracking protein CLASP2 in cytoskeleton-related mechanisms underlying neuronal polarity and interplay between microtubule stabilization and synapse formation and activity.


Highly unstable heterogeneous representations in VIP interneurons of the anterior cingulate cortex.

  • Connor Johnson‎ et al.
  • Molecular psychiatry‎
  • 2022‎

A hallmark of the anterior cingulate cortex (ACC) is its functional heterogeneity. Functional and imaging studies revealed its importance in the encoding of anxiety-related and social stimuli, but it is unknown how microcircuits within the ACC encode these distinct stimuli. One type of inhibitory interneuron, which is positive for vasoactive intestinal peptide (VIP), is known to modulate the activity of pyramidal cells in local microcircuits, but it is unknown whether VIP cells in the ACC (VIPACC) are engaged by particular contexts or stimuli. Additionally, recent studies demonstrated that neuronal representations in other cortical areas can change over time at the level of the individual neuron. However, it is not known whether stimulus representations in the ACC remain stable over time. Using in vivo Ca2+ imaging and miniscopes in freely behaving mice to monitor neuronal activity with cellular resolution, we identified individual VIPACC that preferentially activated to distinct stimuli across diverse tasks. Importantly, although the population-level activity of the VIPACC remained stable across trials, the stimulus-selectivity of individual interneurons changed rapidly. These findings demonstrate marked functional heterogeneity and instability within interneuron populations in the ACC. This work contributes to our understanding of how the cortex encodes information across diverse contexts and provides insight into the complexity of neural processes involved in anxiety and social behavior.


C4 induces pathological synaptic loss by impairing AMPAR trafficking.

  • Rhushikesh A Phadke‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

During development, activation of the complement pathway, an extracellular proteolytic cascade, results in microglia-dependent synaptic elimination via complement receptor 3 (CR3). Here, we report that decreased connectivity caused by overexpression of C4 (C4-OE), a schizophrenia-associated gene, is CR3 independent. Instead, C4-OE triggers GluR1 degradation through an intracellular mechanism involving endosomal trafficking protein SNX27, resulting in pathological synaptic loss. Moreover, the connectivity deficits associated with C4-OE were rescued by increasing levels of SNX27, linking excessive complement activity to an intracellular endolysosomal recycling pathway affecting synapses.


REVEALS: An Open Source Multi Camera GUI For Rodent Behavior Acquisition.

  • Rhushikesh A Phadke‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Understanding the rich behavioral data generated by mice is essential for deciphering the function of the healthy and diseased brain. However, the current landscape lacks effective, affordable, and accessible methods for acquiring such data, especially when employing multiple cameras simultaneously. We have developed REVEALS (Rodent BEhaVior Multi-camErA Laboratory AcquiSition), a graphical user interface (GUI) written in python for acquiring rodent behavioral data via commonly used USB3 cameras. REVEALS allows for user-friendly control of recording from one or multiple cameras simultaneously while streamlining the data acquisition process, enabling researchers to collect and analyze large datasets efficiently. We release this software package as a stand-alone, open-source framework for researchers to use and modify according to their needs. We describe the details of the GUI implementation, including the camera control software and the video recording functionality. We validate results demonstrating the GUI's stability, reliability, and accuracy for capturing and analyzing rodent behavior using DeepLabCut pose estimation in both an object and social interaction assay. REVEALS can also be incorporated into other custom pipelines to analyze complex behavior, such as MoSeq. In summary, REVEALS provides an interface for collecting behavioral data from one or multiple perspectives that, combined with deep learning algorithms, will allow the scientific community to discover and characterize complex behavioral phenotypes to understand brain function better.


RTP801 regulates motor cortex synaptic transmission and learning.

  • Leticia Pérez-Sisqués‎ et al.
  • Experimental neurology‎
  • 2021‎

RTP801/REDD1 is a stress-regulated protein whose upregulation is necessary and sufficient to trigger neuronal death in in vitro and in vivo models of Parkinson's and Huntington's diseases and is up regulated in compromised neurons in human postmortem brains of both neurodegenerative disorders. Indeed, in both Parkinson's and Huntington's disease mouse models, RTP801 knockdown alleviates motor-learning deficits.


A genome-scale metabolic model of Cupriavidus necator H16 integrated with TraDIS and transcriptomic data reveals metabolic insights for biotechnological applications.

  • Nicole Pearcy‎ et al.
  • PLoS computational biology‎
  • 2022‎

Exploiting biological processes to recycle renewable carbon into high value platform chemicals provides a sustainable and greener alternative to current reliance on petrochemicals. In this regard Cupriavidus necator H16 represents a particularly promising microbial chassis due to its ability to grow on a wide range of low-cost feedstocks, including the waste gas carbon dioxide, whilst also naturally producing large quantities of polyhydroxybutyrate (PHB) during nutrient-limited conditions. Understanding the complex metabolic behaviour of this bacterium is a prerequisite for the design of successful engineering strategies for optimising product yields. We present a genome-scale metabolic model (GSM) of C. necator H16 (denoted iCN1361), which is directly constructed from the BioCyc database to improve the readability and reusability of the model. After the initial automated construction, we have performed extensive curation and both theoretical and experimental validation. By carrying out a genome-wide essentiality screening using a Transposon-directed Insertion site Sequencing (TraDIS) approach, we showed that the model could predict gene knockout phenotypes with a high level of accuracy. Importantly, we indicate how experimental and computational predictions can be used to improve model structure and, thus, model accuracy as well as to evaluate potential false positives identified in the experiments. Finally, by integrating transcriptomics data with iCN1361 we create a condition-specific model, which, importantly, better reflects PHB production in C. necator H16. Observed changes in the omics data and in-silico-estimated alterations in fluxes were then used to predict the regulatory control of key cellular processes. The results presented demonstrate that iCN1361 is a valuable tool for unravelling the system-level metabolic behaviour of C. necator H16 and can provide useful insights for designing metabolic engineering strategies.


Overexpression of the schizophrenia risk gene C4 in PV cells drives sex-dependent behavioral deficits and circuit dysfunction.

  • Luke A Fournier‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2024‎

Fast-spiking parvalbumin (PV)-positive cells are key players in orchestrating pyramidal neuron activity and thus serve an indispensable role in cognitive function and emotional regulation. Feed-forward excitatory inputs, essential for the function of PV cells, are disrupted in various neurological conditions, including schizophrenia (SCZ). However, it is not clear how disease-associated stressors such as immune dysregulation contribute to defects in particular cell types or neuronal circuits. We have developed a novel transgenic mouse line that permits conditional, cell-type specific overexpression (OE) of the immune complement component 4 (C4) gene, which is highly associated with SCZ. Using this genetic approach, we demonstrate that specific global OE of mouse C4 (mC4) in PV cells causes pathological anxiety-like behavior in male, but not female mice. In the male medial prefrontal cortex (mPFC), this sexually dimorphic behavioral alteration was accompanied by a reduction in excitatory inputs to fast-spiking cells and an enhancement of their inhibitory connections. Additionally, in PV cells, elevated levels of mC4 led to contrasting effects on the excitability of cortical cells. In males, PV cells and pyramidal neurons exhibited reduced excitability, whereas in females, PV cells displayed heightened excitability. Contrary to the behavioral changes seen with elevated mC4 levels in PV cells, pan-neuronal overexpression did not increase anxiety-like behaviors. This indicates that mC4 dysfunction, particularly in fast-spiking cells, has a more significant negative impact on anxiety-like behavior than widespread alterations in the neuronal complement. Consequently, by employing a novel mouse model, we have demonstrated a causal relationship between the conditional overexpression of the schizophrenia risk gene C4 in fast-spiking neurons and the susceptibility of cortical circuits in male mice, resulting in changes in behaviors associated with prefrontal cortex function.


A pipeline for STED super-resolution imaging and Imaris analysis of nanoscale synapse organization in mouse cortical brain slices.

  • Ezra Kruzich‎ et al.
  • STAR protocols‎
  • 2023‎

Advances in super-resolution imaging enable us to delve into its intricate structural and functional complexities with unprecedented detail. Here, we present a pipeline to visualize and analyze the nanoscale organization of cortical layer 1 apical dendritic spines in the mouse prefrontal cortex. We describe steps for brain slice preparation, immunostaining, stimulated emission depletion super-resolution microscopy, and data analysis using the Imaris software package. This protocol allows the study of physiologically relevant brain circuits implicated in neuropsychiatric disorders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: