2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

[Construction of CD19-CAR retroviral vector and modification of its transduction of human T-lymphocytes].

  • Yang Wang‎ et al.
  • Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi‎
  • 2015‎

To improve the MigR1-CD19-CAR (chimeric antigen receptor) that contains a single chain variable region (scFv) which targeted to CD19 through a retroviral vector transduction efficiency of T-lymphocytes.


Effect of interleukin 21 and its receptor on CD8+ T cells in the pathogenesis of diffuse large B-cell lymphoma.

  • Zhanshan Cha‎ et al.
  • Oncology letters‎
  • 2014‎

Interleukin 21 (IL-21) and its receptor, IL-21R, play a key role in innate and adaptive immunity. In the present study, the effect of IL-21 and IL-21R on the pathogenesis of diffuse large B-cell lymphoma (DLBCL) was investigated. The serum levels of IL-21 were detected by enzyme-linked immunosorbent assay, and the expression of IL-21R on CD8+ T cells was examined through flow cytometry. The data showed that the serum level of IL-21 was significantly decreased in the patients with DLBCL compared with the healthy controls (P<0.001), whereas the expression of IL-21R was clearly elevated on the CD8+ T cells in the patients with DLBCL. Further analyses revealed that the downregulation of the IL-21 serum level was correlated with an increased tumor stage of DLBCL, while the expression of IL-21R on the CD8+ T cells was positively correlated with the tumor stage. Also, the serum level of IL-21 and the proportion of IL-21R on the CD8+ T cells were negatively correlated in the patients. Notably, it was identified that the proportion of IL-21R on the CD8+ T cells, but not the serum level of IL-21, was significantly upregulated in the patients with bone-marrow involvement and B symptoms. These results indicate that IL-21 and IL-21R may be involved in the pathogenesis of DLBCL, in which IL-21R may reflect the progression of the disease more accurately than the serum level of IL-21.


Stimulatory role of interleukin 10 in CD8+ T cells through STATs in gastric cancer.

  • Jianjun Xi‎ et al.
  • Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine‎
  • 2017‎

CD8+ T cells are considered to be critical in tumor surveillance and elimination. Increased CD8+ T cell frequency and function is associated with better prognosis in cancer patients. Interleukin 10 is a cytokine with controversial roles in CD8+ T cell-mediated anti-tumor immunity. We therefore examined the interleukin 10 expression and consumption in CD8+ T cells harvested from the peripheral blood and resected tumors of gastric cancer patients of stages II-IV. We found that the gastric cancer patients presented significantly elevated frequencies of interleukin 10-expressing cells in both CD4+ and CD8+ T cells compared to healthy controls. But distinctive from the interleukin 10-expressing CD4+ T cells, which increased in frequency in advanced cancer, the interleukin 10-expressing CD8+ T cells did not increase with cancer stage in the peripheral blood and actually decreased with cancer stage in resected tumor. Interleukin 10 and interleukin 10 receptor expression was also enriched in interferon gamma-expressing activated CD8+ T cells. Compared to interleukin 10-nonexpressing CD8+ T cells, interleukin 10 receptor-expressing CD8+ T cells secreted significantly elevated interferon gamma levels. Treatment of anti-CD3/CD28-stimulated, purified CD8+ T cells with interleukin 10 alone could significantly enhance CD8+ T cell survival, an effect dependent on interleukin 10 receptor expression. Interleukin 10 also increased CD8+ T cell proliferation synergistically with interferon gamma but not alone. Analysis of downstream signal transducer and activator of transcription molecules showed that interleukin 10 treatment significantly increased the phosphorylation of signal transducer and activator of transcription 3 and signal transducer and activator of transcription 1 to lesser extent. Together, these results demonstrate that interleukin 10 possessed stimulatory roles in activated CD8+ T cells from gastric cancer patients.


Combinatorial nanococktails via self-assembling lipid prodrugs for synergistically overcoming drug resistance and effective cancer therapy.

  • Tongyu Li‎ et al.
  • Biomaterials research‎
  • 2022‎

Combinatorial systemic chemotherapy is a powerful treatment paradigm against cancer, but it is fraught with problems due to the emergence of chemoresistance and additive systemic toxicity. In addition, coadministration of individual drugs suffers from uncontrollable pharmacokinetics and biodistribution, resulting in suboptimal combination synergy.


Multiple sites in the N-terminal half of simian immunodeficiency virus capsid protein contribute to evasion from rhesus monkey TRIM5α-mediated restriction.

  • Ken Kono‎ et al.
  • Retrovirology‎
  • 2010‎

We previously reported that cynomolgus monkey (CM) TRIM5α could restrict human immunodeficiency virus type 2 (HIV-2) strains carrying a proline at the 120th position of the capsid protein (CA), but it failed to restrict those with a glutamine or an alanine. In contrast, rhesus monkey (Rh) TRIM5α could restrict all HIV-2 strains tested but not simian immunodeficiency virus isolated from macaque (SIVmac), despite its genetic similarity to HIV-2.


Circulating CXCR5+CD4+ T cells assist in the survival and growth of primary diffuse large B cell lymphoma cells through interleukin 10 pathway.

  • Zhanshan Cha‎ et al.
  • Experimental cell research‎
  • 2017‎

Diffuse large B cell lymphoma (DLBCL) is a common and aggressive cancer caused by the malignant transformation of B cells. Although it has been established that the follicular helper T (Tfh) cells play a central role in B cell development, little information is available on their involvement in DLBCL pathogenesis. We studied the role of the peripheral Tfh equivalent, the CXCR5+ CD4+ T cells, in DLBCL. Data showed that compared to CXCR5- CD4+ T cells, CXCR5+ CD4+ T cells were significantly more effective at promoting the proliferation as well as inhibiting the apoptosis of primary autologous DLBCL tumor cells. Surprisingly, we found that at equal cell numbers, CXCR5+ CD4+ T cells in DLBCL patients secreted significantly less interleukin (IL)-21 than CXCR5- CD4+ T cells, while the level of IL-10 secretion was significant elevated in the CXCR5+ compartment compared to the CXCR5- compartment. Neutralization of IL-10 in the primary DLBCL-CXCR5+ CD4+ T cell coculture compromised the CXCR5+ CD4+ T cell-mediated pro-tumor effects, in a manner that was dependent on the concentration of anti-IL-10 antibodies. The CXCR5+ compartment also contained significantly lower frequencies of cytotoxic CD4+ T cells than the CXCR5- compartment. In conclusion, our investigations discovered a previously unknown pro-tumor role of CXCR5-expressing circulating CD4+ T cells, which assisted the survival and proliferation of primary DLBCL cells through IL-10.


Oral liposomal delivery of an activatable budesonide prodrug reduces colitis in experimental mice.

  • Shiyun Xian‎ et al.
  • Drug delivery‎
  • 2023‎

Inflammatory bowel disease (IBD) is one of the most common intestinal disorders, with increasing global incidence and prevalence. Numerous therapeutic drugs are available but require intravenous administration and are associated with high toxicity and insufficient patient compliance. Here, an oral liposome that entraps the activatable corticosteroid anti-inflammatory budesonide was developed for efficacious and safe IBD therapy. The prodrug was produced via the ligation of budesonide with linoleic acid linked by a hydrolytic ester bond, which was further constrained into lipid constituents to form colloidal stable nanoliposomes (termed budsomes). Chemical modification with linoleic acid augmented the compatibility and miscibility of the resulting prodrug in lipid bilayers to provide protection from the harsh environment of the gastrointestinal tract, while liposomal nanoformulation enables preferential accumulation to inflamed vasculature. Hence, when delivered orally, budsomes exhibited high stability with low drug release in the stomach in the presence of ultra-acidic pH but released active budesonide after accumulation in inflamed intestinal tissues. Notably, oral administration of budsomes demonstrated favorable anti-colitis effect with only ∼7% mouse body weight loss, whereas at least ∼16% weight loss was observed in other treatment groups. Overall, budsomes exhibited higher therapeutic efficiency than free budesonide treatment and potently induced remission of acute colitis without any adverse side effects. These data suggest a new and reliable approach for improving the efficacy of budesonide. Our in vivo preclinical data demonstrate the safety and increased efficacy of the budsome platform for IBD treatment, further supporting clinical evaluation of this orally efficacious budesonide therapeutic.


Dynamic nanoassemblies derived from small-molecule homodimeric prodrugs for in situ drug activation and safe osteosarcoma treatment.

  • Jian Wang‎ et al.
  • iScience‎
  • 2023‎

Supramolecular prodrug self-assembly is a cost-effective and powerful approach for creating injectable anticancer nanoassemblies. Herein, we describe the self-assembly of small-molecule prodrug nanotherapeutics for tumor-restricted pharmacology that can be self-activated and independent of the exogenous stimuli. Covalent dimerization of the anticancer agent cabazitaxel via reactive oxygen species (ROS)- and esterase-activatable linkages produced the homodimeric prodrug diCTX, which was further coassembled with an ROS generator, dimeric dihydroartemisinin (diDHA). The coassembled nanoparticles were further refined in an amphiphilic matrix, making them suitable for in vivo administration. The ROS obtained from the coassembled diDHA synergized with intracellular esterase to activate the neighboring diCTX, which in turn induced potent cytotoxicity. In a preclinical orthotopic model of human osteosarcomas, nanoparticle administration exhibited durable antitumor efficacy. Furthermore, this smart, dual-responsive nanotherapeutic exhibited lower toxicity in animals than those of free drug combinations. We predict that this platform has great potential for further clinical translation.


MicroRNA-383 regulates the apoptosis of tumor cells through targeting Gadd45g.

  • Lei Zhao‎ et al.
  • PloS one‎
  • 2014‎

MicroRNAs (miRNAs) are a class of small non-coding single-stranded RNA molecules that inhibit gene expression at post-transcriptional level. Gadd45g (growth arrest and DNA-damage-inducible 45 gamma) is a stress-response protein, which has been implicated in several biological processes, including DNA repair, the cell cycle and cell differentiation.


Optimizing the method for generation of integration-free induced pluripotent stem cells from human peripheral blood.

  • Haihui Gu‎ et al.
  • Stem cell research & therapy‎
  • 2018‎

Generation of induced pluripotent stem cells (iPSCs) from human peripheral blood provides a convenient and low-invasive way to obtain patient-specific iPSCs. The episomal vector is one of the best approaches for reprogramming somatic cells to pluripotent status because of its simplicity and affordability. However, the efficiency of episomal vector reprogramming of adult peripheral blood cells is relatively low compared with cord blood and bone marrow cells.


Absence of cyclin-dependent kinase inhibitor p27 or p18 increases efficiency of iPSC generation without induction of iPSC genomic instability.

  • Zhiyan Zhan‎ et al.
  • Cell death & disease‎
  • 2019‎

Mechanisms underlying the generation of induced pluripotent stem cells (iPSC) and keeping iPSC stability remain to be further defined. Accumulated evidences showed that iPSC reprogramming may be controlled by the cell-division-rate-dependent model. Here we reported effects of absence of mouse p27 or p18 on iPSC generation efficiency and genomic stability. Expression levels of cyclin-dependent kinases inhibitors (CDKIs), p21, p27, and p18 decreased during iPSC reprogramming. Like p21 loss, p27 or p18 deficiency significantly promoted efficiency of iPSC generation, whereas ectopic expression of p27, p18, or treatment with CDK2 or CDK4 inhibitors repressed the reprogramming rate, suggesting that CDKIs-regulated iPSC reprogramming is directly related with their functions as CDK inhibitors. However, unlike p21 deletion, absence of p27 or p18 did not increase DNA damage or chromosomal aberrations during iPSC reprogramming and at iPSC stage. Our data not only support that cell cycle regulation is critical for iPSC reprogramming, but also reveal the distinction of CDKIs in somatic cell reprogramming.


A facile method to establish human induced pluripotent stem cells from adult blood cells under feeder-free and xeno-free culture conditions: a clinically compliant approach.

  • Bin-Kuan Chou‎ et al.
  • Stem cells translational medicine‎
  • 2015‎

Reprogramming human adult blood mononuclear cells (MNCs) cells by transient plasmid expression is becoming increasingly popular as an attractive method for generating induced pluripotent stem (iPS) cells without the genomic alteration caused by genome-inserting vectors. However, its efficiency is relatively low with adult MNCs compared with cord blood MNCs and other fetal cells and is highly variable among different adult individuals. We report highly efficient iPS cell derivation under clinically compliant conditions via three major improvements. First, we revised a combination of three EBNA1/OriP episomal vectors expressing five transgenes, which increased reprogramming efficiency by ≥10-50-fold from our previous vectors. Second, human recombinant vitronectin proteins were used as cell culture substrates, alleviating the need for feeder cells or animal-sourced proteins. Finally, we eliminated the previously critical step of manually picking individual iPS cell clones by pooling newly emerged iPS cell colonies. Pooled cultures were then purified based on the presence of the TRA-1-60 pluripotency surface antigen, resulting in the ability to rapidly expand iPS cells for subsequent applications. These new improvements permit a consistent and reliable method to generate human iPS cells with minimal clonal variations from blood MNCs, including previously difficult samples such as those from patients with paroxysmal nocturnal hemoglobinuria. In addition, this method of efficiently generating iPS cells under feeder-free and xeno-free conditions allows for the establishment of clinically compliant iPS cell lines for future therapeutic applications.


Hematopoietic stem cell regeneration enhanced by ectopic expression of ROS-detoxifying enzymes in transplant mice.

  • Weimin Miao‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2013‎

High levels of reactive oxygen species (ROS) can exhaust hematopoietic stem cells (HSCs). Thus, maintaining a low state of redox in HSCs by modulating ROS-detoxifying enzymes may augment the regeneration potential of HSCs. Our results show that basal expression of manganese superoxide dismutase (MnSOD) and catalase were at low levels in long-term and short-term repopulating HSCs, and administration of a MnSOD plasmid and lipofectin complex (MnSOD-PL) conferred radiation protection on irradiated recipient mice. To assess the intrinsic role of elevated MnSOD or catalase in HSCs and hematopoietic progenitor cells, the MnSOD or catalase gene was overexpressed in mouse hematopoietic cells via retroviral transduction. The impact of MnSOD and catalase on hematopoietic progenitor cells was mild, as measured by colony-forming units (CFUs). However, overexpressed catalase had a significant beneficial effect on long-term engraftment of transplanted HSCs, and this effect was further enhanced after an insult of low-dose γ-irradiation in the transplant mice. In contrast, overexpressed MnSOD exhibited an insignificant effect on long-term engraftment of transplanted HSCs, but had a significant beneficial effect after an insult of sublethal irradiation. Taken together, these results demonstrate that HSC function can be enhanced by ectopic expression of ROS-detoxifying enzymes, especially after radiation exposure in vivo.


Prediction and Identification of Power Performance Using Polygenic Models of Three Single-Nucleotide Polymorphisms in Chinese Elite Athletes.

  • Ruoyu Yang‎ et al.
  • Frontiers in genetics‎
  • 2021‎

Objective: The manuscript aims to explore the relationship between power performance and SNPs of Chinese elite athletes and to create polygenic models. Methods: One hundred three Chinese elite athletes were divided into the power group (n = 60) and endurance group (n = 43) by their sports event. Best standing long jump (SLJ) and standing vertical jump (SVJ) were collected. Twenty SNPs were genotyped by SNaPshot. Genotype distribution and allele frequency were compared between groups. Additional genotype data of 125 Chinese elite athletes were used to verify the screened SNPs. Predictive and identifying models were established by multivariate logistic regression analysis. Results: ACTN3 (rs1815739), ADRB3 (rs4994), CNTFR (rs2070802), and PPARGC1A (rs8192678) were significantly different in genotype distribution or allele frequency between groups (p < 0.05). The predictive model consisted of ACTN3 (rs1815739), ADRB3 (rs4994), and PPARGC1A (rs8192678), the area under curve (AUC) of which was 0.736. The identifying model consisted of body mass index (BMI), standing vertical jump (SVJ), ACTN3, ADRB3, and PPARGC1A, the area under curve (AUC) of which was 0.854. Based on the two models, nomograms were created to visualize the results. Conclusion: Two models can be used for talent identification in Chinese athletes, among which the predictive model can be used in adolescent athletes to predict development potential of power performance and the identifying one can be used in elite athletes to evaluate power athletic status. These can be applied quickly and visually by using nomograms. When the score is more than the 130 or 148 cutoff, it suggests that the athlete has a good development potential or a high level for power performance.


Lysyl oxidase polymorphisms and susceptibility to osteosarcoma.

  • Yang Liu‎ et al.
  • PloS one‎
  • 2012‎

Despite the knowledge of many genetic alterations present in osteosarcoma, the complexity of this disease precludes placing its biology into a simple conceptual framework. Lysyl oxidase (LOX) catalyzes the cross-linking of elastin and collagen, which is essential for the structural integrity and function of bone tissue. In the current study, we performed genomic sequencing on all seven exons--including the intron-exon splice sites, and the putative promoter region of LOX gene--followed by luciferase reporter assay to analyze the function of newly identified polymorphisms. Associations between LOX polymorphisms and osteosarcoma were then evaluated. Our sequencing data revealed three polymorphisms (-22G/C, 225C/G, and 473G/A) in the exons and promoter region of LOX. The -22G/C polymorphism lies in the downstream core promoter element (DPE) region and caused a decrease in promoter activity of LOX. The prevalence of the -22C allele and 473A allele were significantly increased in osteosarcoma patients compared to controls (odds ratio [OR] = 3.88, 95% confidence interval [CI]= 1.94-7.78, p = 4.18×10(-5), and OR = 1.38, 95%CI = 1.07-1.78, p = 0.013; p 0.0167 was considered significant after Bonferroni correction). Analyzing haplotype showed that the frequency of CCG haplotype (-22, 225, 473) was significantly higher in osteosarcoma cases than in healthy controls after Bonferroni correction (p = 4.46×10(-4)). These results indicate that the -22G/C polymorphism may affect the expression of LOX, and that -22G/C and 473G/A polymorphisms may be new risk factors for osteosarcoma. These findings reveal a potential new pathway by which genetic polymorphisms may affect human diseases.


Targeted genome engineering in human induced pluripotent stem cells from patients with hemophilia B using the CRISPR-Cas9 system.

  • Cuicui Lyu‎ et al.
  • Stem cell research & therapy‎
  • 2018‎

Replacement therapy for hemophilia remains a lifelong treatment. Only gene therapy can cure hemophilia at a fundamental level. The clustered regularly interspaced short palindromic repeats-CRISPR associated nuclease 9 (CRISPR-Cas9) system is a versatile and convenient genome editing tool which can be applied to gene therapy for hemophilia.


Disulfiram/copper shows potent cytotoxic effects on myelodysplastic syndromes via inducing Bip-mediated apoptosis and suppressing autophagy.

  • Jie Zha‎ et al.
  • European journal of pharmacology‎
  • 2021‎

Patients with myelodysplastic syndromes (MDS) who resist or fail to respond to hypomethylating agents (HMAs) show very poor outcomes and have no effective treatment strategies. Therefore, new therapeutic approaches are urgently needed for MDS patients harboring adverse prognostic factors. Repurposing disulfiram (DSF), an alcohol-abuse drug, with or without Copper (Cu) has attracted considerable attentions as a candidate anti-tumor therapy in diverse malignancies. However, the effect of DSF in the presence or absence of Cu on MDS has not been reported yet. In this study, we found that monotherapy with DSF showed mild cytotoxic effects on MDS preclinical models. However, the anti-tumor activity of DSF was significantly enhanced in the presence of Cu in MDS in vitro and in vivo with minimal safety profiles. DSF/Cu combination blocked MDS cell cycle progression at the G0/G1 phase, accompanied by reduction of the S phase. Accordingly, co-treatment with DSF and Cu downregulated the expression of Cyclin D1 and Cyclin A2, whereas this combination upregulated the level of P21 and P27. Mechanistically, the anti-MDS effectiveness of DSF/Cu was potentially associated with activation of the ER stress-related Bip pathway and inactivation of the Akt pathway. In addition, inhibition of autophagy process also contributed to the cytotoxicity of DSF/Cu in MDS cells. In conclusion, these findings provide impressive evidence that the DSF/Cu complex shows potent anti-tumor efficacies on MDS preclinical models, representing a potential alternative therapy for MDS patients and warranting further investigation in clinical contexts.


Quantitative self-assembly of pure drug cocktails as injectable nanomedicines for synergistic drug delivery and cancer therapy.

  • Xiaona Chen‎ et al.
  • Theranostics‎
  • 2021‎

New strategies to fabricate nanomedicines with high translational capacity are urgently desired. Herein, a new class of self-assembled drug cocktails that addresses the multiple challenges of manufacturing clinically useful cancer nanomedicines was reported. Methods: With the aid of a molecular targeted agent, dasatinib (DAS), cytotoxic cabazitaxel (CTX) forms nanoassemblies (CD NAs) through one-pot process, with nearly quantitative entrapment efficiency and ultrahigh drug loading of up to 100%. Results: Surprisingly, self-assembled CD NAs show aggregation-induced emission, enabling particle trafficking and drug release in living cells. In preclinical models of human cancer, including a patient-derived melanoma xenograft, CD NAs demonstrated striking therapeutic synergy to produce a durable recession in tumor growth. Impressively, CD NAs alleviated the toxicity of the parent CTX agent and showed negligible immunotoxicity in animals. Conclusions: Overall, this approach does not require any carrier matrices, offering a scalable and cost-effective methodology to create a new generation of nanomedicines for the safe and efficient delivery of drug combinations.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: