Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 552 papers

Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling.

  • Tsuneo Ikenoue‎ et al.
  • The EMBO journal‎
  • 2008‎

Protein kinase C (PKC) is involved in a wide array of cellular processes such as cell proliferation, differentiation and apoptosis. Phosphorylation of both turn motif (TM) and hydrophobic motif (HM) are important for PKC function. Here, we show that the mammalian target of rapamycin complex 2 (mTORC2) has an important function in phosphorylation of both TM and HM in all conventional PKCs, novel PKCepsilon as well as Akt. Ablation of mTORC2 components (Rictor, Sin1 or mTOR) abolished phosphorylation on the TM of both PKCalpha and Akt and HM of Akt and decreased HM phosphorylation of PKCalpha. Interestingly, the mTORC2-dependent TM phosphorylation is essential for PKCalpha maturation, stability and signalling. Our study demonstrates that mTORC2 is involved in post-translational processing of PKC by facilitating TM and HM phosphorylation and reveals a novel function of mTORC2 in cellular regulation.


Association of polymorphisms in the MAFB gene and the risk of coronary artery disease and ischemic stroke: a case-control study.

  • Qian Yang‎ et al.
  • Lipids in health and disease‎
  • 2015‎

The v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B gene (MAFB) has been associated with serum lipid levels in the Eurpean population, but little is known about such association in the Chinese population or in atherosclerosis-related patients. Therefore, the purpose of the present study was to assess the association of the single nucleotide polymorphisms (SNPs) in the MAFB and serum lipid levels and the risk of coronary artery disease (CAD) and ischemic stroke (IS) in the Chinese population.


Developing a mesophilic co-culture for direct conversion of cellulose to butanol in consolidated bioprocess.

  • Zhenyu Wang‎ et al.
  • Biotechnology for biofuels‎
  • 2015‎

Consolidated bioprocessing (CBP) of butanol production from cellulosic biomass is a promising strategy for cost saving compared to other processes featuring dedicated cellulase production. CBP requires microbial strains capable of hydrolyzing biomass with enzymes produced on its own with high rate and high conversion and simultaneously produce a desired product at high yield. However, current reported butanol-producing candidates are unable to utilize cellulose as a sole carbon source and energy source. Consequently, developing a co-culture system using different microorganisms by taking advantage of their specific metabolic capacities to produce butanol directly from cellulose in consolidated bioprocess is of great interest.


Combined cancer photothermal-chemotherapy based on doxorubicin/gold nanorod-loaded polymersomes.

  • JinFeng Liao‎ et al.
  • Theranostics‎
  • 2015‎

Gold nanorods (GNRs) are well known in photothermal therapy based on near-infrared (NIR) laser absorption of the longitudinal plasmon band. Herein, we developed an effective stimulus system -- GNRs and doxorubicin co-loaded polymersomes (P-GNRs-DOX) -- to facilitate co-therapy of photothermal and chemotherapy. DOX can be triggered to release once the polymersomes are corrupted under local hyperthermic condition of GNRs induced by NIR laser irradiation. Also, the cytotoxicity of GNRs caused by the residual cetyltrimethylacmmonium bromide (CTAB) was reduced by shielding the polymersomes. The GNRs-loaded polymersomes (P-GNRs) can be efficiently taken up by the tumor cells. The distribution of the nanomaterial was imaged by IR-820 and quantitatively analyzed by ICP-AES. We studied the ablation of tumor cells in vitro and in vivo, and found that co-therapy offers significantly improved therapeutic efficacy (tumors were eliminated without regrowth.) compared with chemotherapy or photothermal therapy alone. By TUNEL immunofluorescent staining of tumors after NIR laser irradiation, we found that the co-therapy showed more apoptotic tumor cells than the other groups. Furthermore, the toxicity study by pathologic examination of the heart tissues demonstrated a lower systematic toxicity of P-GNRs-DOX than free DOX. Thus, the chemo-photothermal treatment based on polymersomes loaded with DOX and GNRs is a useful strategy for maximizing the therapeutic efficacy and minimizing the dosage-related side effects in the treatment of solid tumors.


LOC401317, a p53-regulated long non-coding RNA, inhibits cell proliferation and induces apoptosis in the nasopharyngeal carcinoma cell line HNE2.

  • Zhaojian Gong‎ et al.
  • PloS one‎
  • 2014‎

Recent studies have revealed that long non-coding RNAs participate in all steps of cancer initiation and progression by regulating protein-coding genes at the epigenetic, transcriptional, and post-transcriptional levels. Long non-coding RNAs are in turn regulated by other genes, forming a complex regulatory network. The regulation networks between the p53 tumor suppressor and these RNAs in nasopharyngeal carcinoma remains unclear. The aims of this study were to investigate the regulatory roles of the TP53 gene in regulating long non-coding RNA expression profiles and to study the function of a TP53-regulated long non-coding RNA (LOC401317) in the nasopharyngeal carcinoma cell line HNE2. Long non-coding RNA expression profiling indicated that 133 long non-coding RNAs were upregulated in the human NPC cell line HNE2 cells following TP53 overexpression, while 1057 were downregulated. Among these aberrantly expressed long non-coding RNAs, LOC401317 was the most significantly upregulated one. Further studies indicated that LOC401317 is directly regulated by p53 and that ectopic expression of LOC401317 inhibits HNE2 cell proliferation in vitro and in vivo by inducing cell cycle arrest and apoptosis. LOC401317 inhibited cell cycle progression by increasing p21 expression and decreasing cyclin D1 and cyclin E1 expression and promoted apoptosis through the induction of poly(ADP-ribose) polymerase and caspase-3 cleavage. Collectively, these results suggest that LOC401317 is directly regulated by p53 and exerts antitumor effects in HNE2 nasopharyngeal carcinoma cells.


Isolation and expression of two polyketide synthase genes from Trichoderma harzianum 88 during mycoparasitism.

  • Lin Yao‎ et al.
  • Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]‎
  • 2016‎

Metabolites of mycoparasitic fungal species such as Trichoderma harzianum 88 have important biological roles. In this study, two new ketoacyl synthase (KS) fragments were isolated from cultured Trichoderma harzianum 88 mycelia using degenerate primers and analysed using a phylogenetic tree. The gene fragments were determined to be present as single copies in Trichoderma harzianum 88 through southern blot analysis using digoxigenin-labelled KS gene fragments as probes. The complete sequence analysis in formation of pksT-1 (5669bp) and pksT-2 (7901bp) suggests that pksT-1 exhibited features of a non-reducing type I fungal PKS, whereas pksT-2 exhibited features of a highly reducing type I fungal PKS. Reverse transcription polymerase chain reaction indicated that the isolated genes are differentially regulated in Trichoderma harzianum 88 during challenge with three fungal plant pathogens, which suggests that they participate in the response of Trichoderma harzianum 88 to fungal plant pathogens. Furthermore, disruption of the pksT-2 encoding ketosynthase-acyltransferase domains through Agrobacterium-mediated gene transformation indicated that pksT-2 is a key factor for conidial pigmentation in Trichoderma harzianum 88.


Cinnamaldehyde Derivatives Inhibit Coxsackievirus B3-Induced Viral Myocarditis.

  • Xiao-Qiang Li‎ et al.
  • Biomolecules & therapeutics‎
  • 2017‎

The chemical property of cinnamaldehyde is unstable in vivo, although early experiments have shown its obvious therapeutic effects on viral myocarditis (VMC). To overcome this problem, we used cinnamaldehyde as a leading compound to synthesize derivatives. Five derivatives of cinnamaldehyde were synthesized: 4-methylcinnamaldehyde (1), 4-chlorocinnamaldehyde (2), 4-methoxycinnamaldehyde (3), α-bromo-4-methylcinnamaldehyde (4), and α-bromo-4-chlorocinnamaldehyde (5). Neonatal rat cardiomyocytes and HeLa cells infected by coxsackievirus B3 (CVB3) were used to evaluate their antiviral and cytotoxic effects. In vivo BALB/c mice were infected with CVB3 for establishing VMC models. Among the derivatives, compound 4 and 5 inhibited the CVB3 in HeLa cells with the half-maximal inhibitory concentrations values of 11.38 ± 2.22 μM and 2.12 ± 0.37 μM, respectively. The 50% toxic concentrations of compound 4 and 5-treated cells were 39-fold and 87-fold higher than in the cinnamaldehyde group. Compound 4 and 5 effectively reduced the viral titers and cardiac pathological changes in a dose-dependent manner. In addition, compound 4 and 5 significantly inhibited the secretion, mRNA and protein expressions of inflammatory cytokines TNF-α, IL-1β and IL-6 in CVB3-infected cardiomyocytes, indicating that brominated cinnamaldehyde not only improved the anti-vital activities for VMC, but also had potent anti-inflammatory effects in cardiomyocytes induced by CVB3.


Genome-wide profiling of chicken dendritic cell response to infectious bursal disease.

  • Jian Lin‎ et al.
  • BMC genomics‎
  • 2016‎

Avian infectious bursal disease virus (IBDV) is a highly contagious, immunosuppressive disease of young chickens, which causes high mortality rates and large economic losses in the poultry industry. Dendritic cells (DCs), which are antigen-presenting cells, have the unique ability to induce both innate and acquired immune responses and may significantly influence virus pathogenicity. To understand the interaction between IBDV and DCs, a microarray was used to analyse the response of DCs infected by IBDV.


Synthesis and neuroprotective effects of the complex nanoparticles of iron and sapogenin isolated from the defatted seeds of Camellia oleifera.

  • Qian Yang‎ et al.
  • Pharmaceutical biology‎
  • 2017‎

The defatted seeds of Camellia oleifera var. monosperma Hung T. Chang (Theaceae) are currently discarded without effective utilization. However, sapogenin has been isolated and shows antioxidative, anti-inflammatory and analgesic activities suggestive of its neuroprotective function.


Cardioprotective effect of paeonol and danshensu combination on isoproterenol-induced myocardial injury in rats.

  • Hua Li‎ et al.
  • PloS one‎
  • 2012‎

Traditional Chinese medicinal herbs Cortex Moutan and Radix Salviae Milthiorrhizaeare are prescribed together for their putative cardioprotective effects in clinical practice. However, the rationale of the combined use remains unclear. The present study was designed to investigate the cardioprotective effects of paeonol and danshensu (representative active ingredient of Cortex Moutan and Radix Salviae Milthiorrhizae, respectively) on isoproterenol-induced myocardial infarction in rats and its underlying mechanisms.


The Effects of GH Transgenic Goats on the Microflora of the Intestine, Feces and Surrounding Soil.

  • Zekun Bao‎ et al.
  • PloS one‎
  • 2015‎

The development of genetically engineered animals has brought with it increasing concerns about biosafety issues. We therefore evaluated the risks of growth hormone from transgenic goats, including the probability of horizontal gene transfer and the impact on the microbial community of the goats' gastrointestinal tracts, feces and the surrounding soil. The results showed that neither the GH nor the neoR gene could be detected in the samples. Moreover, there was no significant change in the microbial community of the gastrointestinal tracts, feces and soil, as tested with PCR-denaturing gradient gel electrophoresis and 16S rDNA sequencing. Finally, phylogenetic analysis showed that the intestinal content, feces and soil samples all contained the same dominant group of bacteria. These results demonstrated that expression of goat growth hormone in the mammary of GH transgenic goat does not influence the microflora of the intestine, feces and surrounding soil.


Biliverdin Reductase A (BVRA) Mediates Macrophage Expression of Interleukin-10 in Injured Kidney.

  • Zhizhi Hu‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

Biliverdin reductase A is an enzyme, with serine/threonine/tyrosine kinase activation, converting biliverdin (BV) to bilirubin (BR) in heme degradation pathway. It has been reported to have anti-inflammatory and antioxidant effect in monocytes and human glioblastoma. However, the function of BVRA in polarized macrophage was unknown. This study aimed to investigate the effect of BVRA on macrophage activation and polarization in injured renal microenvironment. Classically activated macrophages (M1macrophages) and alternative activation of macrophages (M2 macrophages) polarization of murine bone marrow derived macrophage was induced by GM-CSF and M-CSF. M1 polarization was associated with a significant down-regulation of BVRA and Interleukin-10 (IL-10), and increased secretion of TNF-α. We also found IL-10 expression was increased in BVRA over-expressed macrophages, while it decreased in BVRA knockdown macrophages. In contrast, BVRA over-expressed or knockdown macrophages had no effect on TNF-α expression level, indicating BVRA mediated IL-10 expression in macrophages. Furthermore, we observed in macrophages infected with recombinant adenoviruses BVRA gene, which BVRA over-expressed enhanced both INOS and ARG-1 mRNA expression, resulting in a specific macrophage phenotype. Through in vivo study, we found BVRA positive macrophages largely existed in mice renal ischemia perfusion injury. With the treatment of the regular cytokines GM-CSF, M-CSF or LPS, excreted in the injured renal microenvironment, IL-10 secretion was significantly increased in BVRA over-expressed macrophages. In conclusion, the BVRA positive macrophage is a source of anti-inflammatory cytokine IL-10 in injured kidney, which may provide a potential target for treatment of kidney disease.


Continuous AMD3100 Treatment Worsens Renal Fibrosis through Regulation of Bone Marrow Derived Pro-Angiogenic Cells Homing and T-Cell-Related Inflammation.

  • Juan Yang‎ et al.
  • PloS one‎
  • 2016‎

AMD3100 is a small molecule inhibitor of chemokine receptor type 4 (CXCR4), which is located in the cell membranes of CD34+ cells and a variety of inflammatory cells and has been reported to reduce organ fibrosis in the lung, liver and myocardium. However, the effect of AMD3100 on renal fibrosis is unknown. This study investigated the impact of AMD3100 on renal fibrosis. C57bl/6 mice were subjected to unilateral ureteral obstruction (UUO) surgery with or without AMD3100 administration. Tubular injury, collagen deposition and fibrosis were detected and analyzed by histological staining, immunocytochemistry and Western Blot. Bone marrow derived pro-angiogenic cells (CD45+, CD34+ and CD309+ cells) and capillary density (CD31+) were measured by flow cytometry (FACS) and immunofluorescence (IF). Inflammatory cells, chemotactic factors and T cell proliferation were characterized. We found that AMD3100 treatment did not alleviate renal fibrosis but, rather, increased tissue damage and renal fibrosis. Continuous AMD3100 administration did not improve bone marrow derived pro-angiogenic cells mobilization but, rather, inhibited the migration of bone marrow derived pro-angiogenic cells into the fibrotic kidney. Additionally, T cell infiltration was significantly increased in AMD3100-treated kidneys compared to un-treated kidneys. Thus, treatment of UUO mice with AMD3100 led to an increase in T cell infiltration, suggesting that AMD3100 aggravated renal fibrosis.


Anticancer effects of bufalin on human hepatocellular carcinoma HepG2 cells: roles of apoptosis and autophagy.

  • Qing Miao‎ et al.
  • International journal of molecular sciences‎
  • 2013‎

The traditional Chinese medicine bufalin, extracted from toad's skin, has been demonstrated to exert anticancer activities in various kinds of human cancers. The mechanisms of action lie in its capacity to induce apoptosis, or termed type I programmed cell death (PCD). However, type II PCD, or autophagy, participates in cancer proliferation, progression, and relapse, as well. Recent studies on autophagy seem to be controversial because of the dual roles of autophagy in cancer survival and death. In good agreement with previous studies, we found that 100 nM bufalin induced extensive HepG2 cell apoptosis. However, we also noticed bufalin triggered autophagy and enhanced Beclin-1 expression, LC3-I to LC3-II conversion, as well as decreased p62 expression and mTOR signaling activation in HepG2 cells. Blockage of autophagy by selective inhibitor 3-MA decreased apoptotic ratio in bufalin-treated HepG2 cells, suggesting a proapoptotic role of bufalin-induced autophagy. Furthermore, we investigated the underlying mechanisms of bufalin-induced autophagy. Bufalin treatment dose-dependently promoted AMPK phosphorylation while AMPK inhibition by compound C significantly attenuated bufalin-induced autophagy. Taken together, we report for the first time that bufalin induces HepG2 cells PCD, especially for autophagy, and the mechanism of action is, at least in part, AMPK-mTOR dependent.


Endocytosis of GluN2B-containing NMDA receptors mediates NMDA-induced excitotoxicity.

  • Yu Wu‎ et al.
  • Molecular pain‎
  • 2017‎

N-methyl-D-aspartate (NMDA) receptor overactivation is involved in neuronal damage after stroke. However, the mechanism underlying NMDA receptor-mediated excitotoxicity remains unclear. In this study, we confirmed that excessive activation of NMDARs led to cell apoptosis in PC12 cells and in primary cultured cortical neurons, which was mediated predominantly by the GluN2B-containing, but not the GluN2A-containing NMDARs. In addition, Clathrin-dependent endocytosis participated in NMDA-induced excitotoxicity. Furthermore, we identified that GluN2B-containing NMDARs underwent endocytosis during excessive NMDA treatment. Peptides specifically disrupting the interaction between GluN2B and AP-2 complex not only blocked endocytosis of GluN2B induced by NMDA treatment but also abolished NMDA-induced excitotoxicity. These results demonstrate that Clathrin-dependent endocytosis of GluN2B-containing NMDARs is critical to NMDA-induced excitotoxicity in PC12 cells and in primary cultured cortical neurons, and therefore provide a novel target for blocking NMDAR-mediated excitotoxicity.


New production process of the antifungal chaetoglobosin A using cornstalks.

  • Cheng Jiang‎ et al.
  • Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]‎
  • 2017‎

Chaetoglobosin A is an antibacterial compound produced by Chaetomium globosum, with potential application as a biopesticide and cancer treatment drug. The aim of this study was to evaluate the feasibility of utilizing cornstalks to produce chaetoglobosin A by C. globosum W7 in solid-batch fermentation and to determine an optimal method for purification of the products. The output of chaetoglobosin A from the cornstalks was 0.34mg/g, and its content in the crude extract was 4.80%. Purification conditions were optimized to increase the content of chaetoglobosin A in the crude extract, including the extract solvent, temperature, and pH value. The optimum process conditions were found to be acetone as the extractant, under room temperature, and at a pH value of 13. Under these conditions, a production process of the antifungal chaetoglobosin A was established, and the content reached 19.17%. Through further verification, cornstalks could replace crops for the production of chaetoglobosin A using this new production process. Moreover, the purified products showed great inhibition against Rhizoctonia solani, with chaetoglobosin A confirmed as the main effective constituent (IC50=3.88μg/mL). Collectively, these results demonstrate the feasibility of using cornstalks to synthesize chaetoglobosin A and that the production process established in this study was effective.


Downregulated Expression of Solute Carrier Family 26 Member 6 in NRK-52E Cells Attenuates Oxalate-Induced Intracellular Oxidative Stress.

  • Hongyang Jiang‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2018‎

Solute carrier family 26 member 6 (Slc26a6), which is mainly expressed in the intestines and kidneys, is a multifunctional anion transporter that is crucial in the transport of oxalate anions. This study is aimed at investigating the effect of Slc26a6 expression on oxalate-induced cell oxidation and crystal formation. Lentivirus transfection was used to upregulate or downregulate Slc26a6 expression in NRK cells. Cell viability and apoptosis, reactive oxygen species (ROS) and malondialdehyde (MDA) generation, and superoxide dismutase (SOD) activity were measured. Crystal adhesion and the cell ultrastructure were observed using light and transmission electron microscopy (TEM). Three groups of rats, normal control, lentivirus-vector, and lentivirus-small interfering RNA (lv-siRNA) groups, were used, and after lentivirus transfection, they were fed 1% ethylene glycol (EG) and 0.5% ammonium chloride (NH4Cl) for 2 weeks. Dihydroethidium (DHE), terminal deoxynucleotidyl transferase (TdT) deoxyuridine dUTP nick-end labeling (TUNEL), and von Kossa staining were performed, and nuclear factor κB (NFκB) and osteopontin (OPN) expression were measured. In the vitro study, compared to the control group, downregulated Slc26a6 NRK cells showed alleviation of the cell viability decrease, cell apoptosis rate, ROS generation, and SOD activity decrease after oxalate treatment. Crystal adhesion and vesicles were significantly less after oxalate exposure than in the untreated controls. Rats infected with lentivirus-siRNA exhibited attenuated SOD generation, cell apoptosis, and crystal formation in the kidneys. Increased phosphorylation of NFκB and OPN was involved in the pathological process. In conclusion, the results of the present study indicate that reducing the expression of Slc26a6 in the kidney may be a potential strategy for preventing stone formation.


Genetic characterization and molecular epidemiological analysis of novel enterovirus EV-B80 in China.

  • Zhenzhi Han‎ et al.
  • Emerging microbes & infections‎
  • 2018‎

Enterovirus B80 (EV-B80) is a newly identified serotype belonging to the enterovirus B species. To date, only two full-length genomic sequences of EV-B80 are available in GenBank, and few studies on EV-B80 have been conducted in China or worldwide. More information and research on EV-B80 is needed to assess its genetic characteristics, phylogenetic relationships, and association with enteroviral diseases. In this study, we report the phylogenetic characteristics of three Xinjiang EV-B80 strains and one Tibet EV-B80 strain in China. The full-length genomic sequences of four strains show 78.8-79% nucleotide identity and 94-94.2% amino acid identity with the prototype of EV-B80, indicating a tendency for evolution. Based on a maximum likelihood phylogenetic tree based on the entire VP1 region, three genotypes (A-C) were defined, revealing the possible origin of EV-B80 strains in the mainland of China. Recombination analysis revealed intraspecies recombinations in all four EV-B80 strains in nonstructural regions along with two recombination patterns. Due to the geographic factor, the coevolution of EV-B strains formed two different patterns of circulation. An antibody seroprevalence study against EV-B80 in two Xinjiang prefectures also showed that EV-B80 strains were widely prevalent in Xinjiang, China, compared to other studies on EV-B106 and EV-B89. All four EV-B80 strains are not temperature sensitive, showing a higher transmissibility in the population. In summary, this study reports the full-length genomic sequences of EV-B80 and provides valuable information on global EV-B80 molecular epidemiology.


Efficacy and safety of pinaverium bromide combined with flupentixol-melitracen for diarrhea-type irritable bowel syndrome: A systematic review and meta-analysis.

  • Lifeng Qin‎ et al.
  • Medicine‎
  • 2019‎

There are many trials on the combination of Pinaverium bromide (PB) and Flupentixol-melitracen (FM) in the treatment of diarrhea-type irritable bowel syndrome (IBS-D), but the sample sizes are small, and the research conclusions are inconsistent. Thus, a meta-analysis was performed, aiming to evaluate the efficacy and safety of this combination therapy in patients with IBS-D.


The immune mechanism of Mycoplasma hyopneumoniae 168 vaccine strain through dendritic cells.

  • Yumeng Shen‎ et al.
  • BMC veterinary research‎
  • 2017‎

Mycoplasma hyopneumoniae (Mhp) causes porcine enzootic pneumonia, a disease that cause major economic losses in the pig industry. Dendritic cells (DCs), the most effective antigen-presenting cells, are widely distributed beneath respiratory epithelium, DCs uptake and present antigens to T cells, to initiate protective immune responses in different infections. In this study, we investigated the role of porcine DCs in vaccine Mhp-168 exposure.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: