Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

Biliverdin Reductase A (BVRA) Mediates Macrophage Expression of Interleukin-10 in Injured Kidney.

  • Zhizhi Hu‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

Biliverdin reductase A is an enzyme, with serine/threonine/tyrosine kinase activation, converting biliverdin (BV) to bilirubin (BR) in heme degradation pathway. It has been reported to have anti-inflammatory and antioxidant effect in monocytes and human glioblastoma. However, the function of BVRA in polarized macrophage was unknown. This study aimed to investigate the effect of BVRA on macrophage activation and polarization in injured renal microenvironment. Classically activated macrophages (M1macrophages) and alternative activation of macrophages (M2 macrophages) polarization of murine bone marrow derived macrophage was induced by GM-CSF and M-CSF. M1 polarization was associated with a significant down-regulation of BVRA and Interleukin-10 (IL-10), and increased secretion of TNF-α. We also found IL-10 expression was increased in BVRA over-expressed macrophages, while it decreased in BVRA knockdown macrophages. In contrast, BVRA over-expressed or knockdown macrophages had no effect on TNF-α expression level, indicating BVRA mediated IL-10 expression in macrophages. Furthermore, we observed in macrophages infected with recombinant adenoviruses BVRA gene, which BVRA over-expressed enhanced both INOS and ARG-1 mRNA expression, resulting in a specific macrophage phenotype. Through in vivo study, we found BVRA positive macrophages largely existed in mice renal ischemia perfusion injury. With the treatment of the regular cytokines GM-CSF, M-CSF or LPS, excreted in the injured renal microenvironment, IL-10 secretion was significantly increased in BVRA over-expressed macrophages. In conclusion, the BVRA positive macrophage is a source of anti-inflammatory cytokine IL-10 in injured kidney, which may provide a potential target for treatment of kidney disease.


Continuous AMD3100 Treatment Worsens Renal Fibrosis through Regulation of Bone Marrow Derived Pro-Angiogenic Cells Homing and T-Cell-Related Inflammation.

  • Juan Yang‎ et al.
  • PloS one‎
  • 2016‎

AMD3100 is a small molecule inhibitor of chemokine receptor type 4 (CXCR4), which is located in the cell membranes of CD34+ cells and a variety of inflammatory cells and has been reported to reduce organ fibrosis in the lung, liver and myocardium. However, the effect of AMD3100 on renal fibrosis is unknown. This study investigated the impact of AMD3100 on renal fibrosis. C57bl/6 mice were subjected to unilateral ureteral obstruction (UUO) surgery with or without AMD3100 administration. Tubular injury, collagen deposition and fibrosis were detected and analyzed by histological staining, immunocytochemistry and Western Blot. Bone marrow derived pro-angiogenic cells (CD45+, CD34+ and CD309+ cells) and capillary density (CD31+) were measured by flow cytometry (FACS) and immunofluorescence (IF). Inflammatory cells, chemotactic factors and T cell proliferation were characterized. We found that AMD3100 treatment did not alleviate renal fibrosis but, rather, increased tissue damage and renal fibrosis. Continuous AMD3100 administration did not improve bone marrow derived pro-angiogenic cells mobilization but, rather, inhibited the migration of bone marrow derived pro-angiogenic cells into the fibrotic kidney. Additionally, T cell infiltration was significantly increased in AMD3100-treated kidneys compared to un-treated kidneys. Thus, treatment of UUO mice with AMD3100 led to an increase in T cell infiltration, suggesting that AMD3100 aggravated renal fibrosis.


Blocking connexin 43 and its promotion of ATP release from renal tubular epithelial cells ameliorates renal fibrosis.

  • Huzi Xu‎ et al.
  • Cell death & disease‎
  • 2022‎

Whether metabolites derived from injured renal tubular epithelial cells (TECs) participate in renal fibrosis is poorly explored. After TEC injury, various metabolites are released and among the most potent is adenosine triphosphate (ATP), which is released via ATP-permeable channels. In these hemichannels, connexin 43 (Cx43) is the most common member. However, its role in renal interstitial fibrosis (RIF) has not been fully examined. We analyzed renal samples from patients with obstructive nephropathy and mice with unilateral ureteral obstruction (UUO). Cx43-KSP mice were generated to deplete Cx43 in TECs. Through transcriptomics, metabolomics, and single-cell sequencing multi-omics analysis, the relationship among tubular Cx43, ATP, and macrophages in renal fibrosis was explored. The expression of Cx43 in TECs was upregulated in both patients and mice with obstructive nephropathy. Knockdown of Cx43 in TECs or using Cx43-specific inhibitors reduced UUO-induced inflammation and fibrosis in mice. Single-cell RNA sequencing showed that ATP specific receptors, including P2rx4 and P2rx7, were distributed mainly on macrophages. We found that P2rx4- or P2rx7-positive macrophages underwent pyroptosis after UUO, and in vitro ATP directly induced pyroptosis by macrophages. The administration of P2 receptor or P2X7 receptor blockers to UUO mice inhibited macrophage pyroptosis and demonstrated a similar degree of renoprotection as Cx43 genetic depletion. Further, we found that GAP 26 (a Cx43 hemichannel inhibitor) and A-839977 (an inhibitor of the pyroptosis receptor) alleviated UUO-induced fibrosis, while BzATP (the agonist of pyroptosis receptor) exacerbated fibrosis. Single-cell sequencing demonstrated that the pyroptotic macrophages upregulated the release of CXCL10, which activated intrarenal fibroblasts. Cx43 mediates the release of ATP from TECs during renal injury, inducing peritubular macrophage pyroptosis, which subsequently leads to the release of CXCL10 and activation of intrarenal fibroblasts and acceleration of renal fibrosis.


Identification of driver genes in lupus nephritis based on comprehensive bioinformatics and machine learning.

  • Zheng Wang‎ et al.
  • Frontiers in immunology‎
  • 2023‎

Lupus nephritis (LN) is a common and severe glomerulonephritis that often occurs as an organ manifestation of systemic lupus erythematosus (SLE). However, the complex pathological mechanisms associated with LN have hindered the progress of targeted therapies.


Bone marrow-derived Ly6C- macrophages promote ischemia-induced chronic kidney disease.

  • Qian Yang‎ et al.
  • Cell death & disease‎
  • 2019‎

Macrophages play an important role in renal injury and repair after acute kidney injury (AKI) and the subsequent chronic kidney disease (CKD) that often results. However, as macrophages have a high degree of plasticity and heterogeneity, the function(s) of macrophage subtypes in AKI-to-CKD progression are not fully understood. Here, we focused on Ly6C- macrophages, which are derived from the embryonic yolk sac and post-development become resident in the kidneys. We found that C-C chemokine receptor type 2 (CCR2) deficiency, which blocks the migration of Ly6C+ macrophages from the bone marrow to the sites of injury, alleviated ischemia-induced AKI in mice. Unexpectedly, though, CCR2 deficiency worsened the subsequent renal fibrosis, which was marked by notable intra-renal infiltration of Ly6C- macrophages. These Ly6C- macrophages were greater in number in both the acute and chronic phases after ischemia reperfusion (I/R) in kidneys of wild type (WT) mice, and we showed them to be derived from the bone marrow by bone marrow chimerism. Clodronate Liposomes (CLs)-mediated depletion of renal Ly6C- macrophages in CCR2-/- mice or in WT mice after I/R alleviated the renal injury and fibrosis. On the contrary, adoptive transfer of Ly6C- macrophages from injured kidneys of WT mice into immune-deficient mice was sufficient to induce renal injury and fibrosis. Transcriptome sequencing of Ly6C- macrophages from injured kidneys revealed that they secreted various cytokines and growth factors, which were associated with the transdifferentiation of fibroblasts into myofibroblasts. This transdifferentiation effect was further supported by in vitro studies showing that Ly6C- macrophages induced the secretion of extracellular matrix proteins from co-cultured fibroblasts. In conclusion, the presence of bone marrow-derived Ly6C- macrophages after ischemia induces AKI and worsens subsequent CKD.


Putative endothelial progenitor cells do not promote vascular repair but attenuate pericyte-myofibroblast transition in UUO-induced renal fibrosis.

  • Juan Yang‎ et al.
  • Stem cell research & therapy‎
  • 2019‎

Putative endothelial progenitor cells (pEPCs) have been confirmed to participate in alleviation of renal fibrosis in several ischaemic diseases. However, their mechanistic effect on renal fibrosis, which is characterized by vascular regression and further rarefaction-related pathology, remains unknown.


The probiotic L. casei Zhang slows the progression of acute and chronic kidney disease.

  • Han Zhu‎ et al.
  • Cell metabolism‎
  • 2021‎

The relationship between gut microbial dysbiosis and acute or chronic kidney disease (CKD) is still unclear. Here, we show that oral administration of the probiotic Lactobacillus casei Zhang (L. casei Zhang) corrected bilateral renal ischemia-reperfusion (I/R)-induced gut microbial dysbiosis, alleviated kidney injury, and delayed its progression to CKD in mice. L. casei Zhang elevated the levels of short-chain fatty acids (SCFAs) and nicotinamide in the serum and kidney, resulting in reduced renal inflammation and damage to renal tubular epithelial cells. We also performed a 1-year phase 1 placebo-controlled study of oral L. casei Zhang use (Chinese clinical trial registry, ChiCTR-INR-17013952), which was well tolerated and slowed the decline of kidney function in individuals with stage 3-5 CKD. These results show that oral administration of L. casei Zhang, by altering SCFAs and nicotinamide metabolism, is a potential therapy to mitigate kidney injury and slow the progression of renal decline.


Exogenous bone marrow derived-putative endothelial progenitor cells attenuate ischemia reperfusion-induced vascular injury and renal fibrosis in mice dependent on pericytes.

  • Meng Wang‎ et al.
  • Theranostics‎
  • 2020‎

Rationale: Capillaries are composed of endothelial cells and the surrounding mural cells, pericytes. Microvascular repair after injury involves not only the proliferation of endothelial cells but also pericyte-based vessel stabilization. Exogenous bone marrow derived-putative endothelial progenitor cells (b-pEPCs) have the potential for vascular repair; however, their effect on vascular structure stabilization and pericyte-related pathobiological outcomes in the injured kidney has not been fully examined. Methods: We applied ischemia-reperfusion (IR) to induce renal vascular injury and renal fibrosis in mice. Platelet-derived growth factor receptor β (PDGFR-β)-DTR-positive mice were generated to deplete pericytes, and exogenous b-pEPCs and the PDGFR-β ligand, PDGF chain B (PDGF-BB), were employed to explore the relationship among b-pEPCs, pericytes, vascular repair, and early renal fibrosis. Results: Administration of b-pEPCs reduced IR-induced pericyte-endothelial detachment, pericyte proliferation, and myofibroblast transition via a paracrine mode, which preserved not only vascular stabilization but also ameliorated IR-initiated renal fibrosis. PDGF-BB upregulated the expression of PDGFR-β, exacerbated vascular abnormality, and pericyte-myofibroblast transition, which were ameliorated by b-pEPCs administration. The exogenous b-pEPCs and their culture medium (CM) induced vascular injury protection, and renal fibrosis was blocked by selective deletion of pericytes. Conclusion: Exogenous b-pEPCs directly protect against IR-induced vascular injury and prevent renal fibrosis by inhibiting the activation of PDGFR-β-positive pericytes.


Tertiary lymphoid organs are associated with the progression of kidney damage and regulated by interleukin-17A.

  • Ran Luo‎ et al.
  • Theranostics‎
  • 2021‎

Background: Tertiary lymphoid organs (TLOs) occur after multiple chronic kidney injuries. interleukin-17A (IL-17A) has been reported to associate with the development of TLOs in inflammatory diseases. However, regulation of the renal TLOs and its clinical significance to the pathogenesis of chronic kidney injury are unknown. Methods: To evaluate the clinical significance and regulation of renal TLOs, we analyzed the progression of patients with kidney damage based on the existence and absence of TLOs in a larger multicenter cohort. We also blocked the recruitment of lymphocyte cells into the kidney by FTY720 (fingolimod) in vivo. Besides, we used aged IL-17A genetic knocked out mice and IL-17A-neutralizing antibody to explore the role of IL-17A in renal TLOs formation. Results: We demonstrated that renal TLOs of IgA nephropathy patients were associated with disease severity and were independent risk factors for renal progression after adjustment for age, sex, mean arterial pressure, proteinuria and, baseline eGFR and MEST-C score, especially in the early stage. Plasma levels of TLO-related chemokines CXCL13, CCL19, and CCL21 were higher in patients with renal TLOs. Inhibiting the formation of renal TLOs by FTY720 could reduce the intrarenal inflammation and fibrosis, and early intervention was found to be more effective. IL-17A was increased in renal TLOs models, and genetic depletion of IL-17A or treatment with anti-IL-17A antibody resulted in a marked reduction of the TLOs formation as well as alleviation of renal inflammation and fibrosis. Conclusion: These results indicate that TLOs are associated with the progression of kidney damage and regulated by IL-17A and may be effective targets for the treatment of kidney damage.


Blocking protein phosphatase 2A signaling prevents endothelial-to-mesenchymal transition and renal fibrosis: a peptide-based drug therapy.

  • Yuanjun Deng‎ et al.
  • Scientific reports‎
  • 2016‎

Endothelial-to-mesenchymal transition (EndMT) contributes to the emergence of fibroblasts and plays a significant role in renal interstitial fibrosis. Protein phosphatase 2A (PP2A) is a major serine/threonine protein phosphatase in eukaryotic cells and regulates many signaling pathways. However, the significance of PP2A in EndMT is poorly understood. In present study, the role of PP2A in EndMT was evaluated. We demonstrated that PP2A activated in endothelial cells (EC) during their EndMT phenotype acquisition and in the mouse model of obstructive nephropathy (i.e., UUO). Inhibition of PP2A activity by its specific inhibitor prevented EC undergoing EndMT. Importantly, PP2A activation was dependent on tyrosine nitration at 127 in the catalytic subunit of PP2A (PP2Ac). Our renal-protective strategy was to block tyrosine127 nitration to inhibit PP2A activation by using a mimic peptide derived from PP2Ac conjugating a cell penetrating peptide (CPP: TAT), termed TAT-Y127WT. Pretreatment with TAT-Y127WT was able to prevent TGF-β1-induced EndMT. Administration of the peptide to UUO mice significantly ameliorated renal EndMT level, with preserved density of peritubular capillaries and reduction in extracellular matrix deposition. Taken together, these results suggest that inhibiting PP2Ac nitration using a mimic peptide is a potential preventive strategy for EndMT in renal fibrosis.


Cdc42-Interacting Protein 4 Represses E-Cadherin Expression by Promoting β-Catenin Translocation to the Nucleus in Murine Renal Tubular Epithelial Cells.

  • Chuou Xu‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

Renal fibrosis is an inevitable outcome of end-stage chronic kidney disease. During this process, epithelial cells lose E-cadherin expression. β-Catenin may act as a mediator by accumulation and translocation to the nucleus. Studies have suggested that CIP4, a Cdc42 effector protein, is associated with β-catenin. However, whether CIP4 contributes to E-cadherin loss in epithelial cells by regulating β-catenin translocation is unclear. In this study, we investigated the involvement of CIP4 in β-catenin translocation. Expression of CIP4 was upregulated in renal tissues of 5/6 nephrectomized rats and mainly distributed in renal tubular epithelia. In TGF-β1-treated NRK-52E cells, upregulation of CIP4 expression was accompanied by reduced expression of E-cadherin. CIP4 overexpression promoted the translocation of β-catenin to the nucleus, which was accompanied by reduced expression of E-cadherin even without TGF-β1 stimulation. In contrast, CIP4 depletion by using siRNA inhibited the translocation of β-catenin to the nucleus and reversed the decrease in expression of E-cadherin. The interaction between CIP4 and β-catenin was detected. We also show that β-catenin depletion could restore the expression of E-cadherin that was suppressed by CIP4 overexpression. In conclusion, these results suggest that CIP4 overexpression represses E-cadherin expression by promoting β-catenin translocation to the nucleus.


Adipose-derived mesenchymal stem cells employed exosomes to attenuate AKI-CKD transition through tubular epithelial cell dependent Sox9 activation.

  • Fengming Zhu‎ et al.
  • Oncotarget‎
  • 2017‎

Acute kidney injury (AKI) predisposes patients to an increased risk into progressive chronic kidney disease (CKD), however effective treatments are still elusive. This study aimed to investigate the therapeutic efficacy of human adipose-derived MSCs (hAD-MSCs) in the prevention of AKI-CKD transition, and illuminate the role of Sox9, a vital transcription factor in the development of kidney, in this process. C57BL/6 mice were subjected to unilateral renal ischemia/reperfusion (I/R) with or without hAD-MSC treatment. We found that hAD-MSC treatment upregulated the expression of tubular Sox9, promoted tubular regeneration, attenuated AKI, and mitigated subsequent renal fibrosis. However, these beneficial effects were abolished by a drug inhibiting the release of exosomes from hAD-MSCs. Similarly, Sox9 inhibitors reversed these protective effects. Further, we verified that hAD-MSCs activated tubular Sox9 and prevented TGF-β1-induced transformation of TECs into pro-fibrotic phenotype through exosome shuttling in vitro, but the cells did not inhibit TGF-β1-induced transition of fibroblasts into myofibroblasts. Inhibiting the release of exosomes from hAD-MSCs or the expression of Sox9 in TECs reversed these antifibrotic effects. In conclusion, hAD-MSCs employed exosomes to mitigate AKI-CKD transition through tubular epithelial cell dependent activation of Sox9.


Lymphangiogenesis in kidney and lymph node mediates renal inflammation and fibrosis.

  • Guangchang Pei‎ et al.
  • Science advances‎
  • 2019‎

Lymphangiogenesis is associated with chronic kidney disease (CKD) and occurs following kidney transplant. Here, we demonstrate that expanding lymphatic vessels (LVs) in kidneys and corresponding renal draining lymph nodes (RDLNs) play critical roles in promoting intrarenal inflammation and fibrosis following renal injury. Our studies show that lymphangiogenesis in the kidney and RDLN is driven by proliferation of preexisting lymphatic endothelium expressing the essential C-C chemokine ligand 21 (CCL21). New injury-induced LVs also express CCL21, stimulating recruitment of more CCR7+ dendritic cells (DCs) and lymphocytes into both RDLNs and spleen, resulting in a systemic lymphocyte expansion. Injury-induced intrarenal inflammation and fibrosis could be attenuated by blocking the recruitment of CCR7+ cells into RDLN and spleen or inhibiting lymphangiogenesis. Elucidating the role of lymphangiogenesis in promoting intrarenal inflammation and fibrosis provides a key insight that can facilitate the development of novel therapeutic strategies to prevent progression of CKD-associated fibrosis.


Depletion of macrophages with clodronate liposomes partially attenuates renal fibrosis on AKI-CKD transition.

  • Zhizhi Hu‎ et al.
  • Renal failure‎
  • 2023‎

Clodronate liposomes are bisphosphonates encapsulated by liposomes that are known to induce macrophage depletion in vivo. In a previous study, clodronate liposomes improved renal ischemia/reperfusion (I/R) injury in mice, which may be due to effects on macrophage phenotypes. However, how inflammatory cytokines secretion participates is unknown. In this study, we investigated the effect of macrophages in the I/R kidney by depleting macrophages with clodronate liposomes and changing inflammatory cytokines. C57BL/6 mice underwent I/R injury with or without clodronate liposomes administration on Days 5 and 15. Tubular injury, collagen deposition, and fibrosis were detected and analyzed by histological staining, immunocytochemistry (IHC), flow cytometry (FACS), and reverse transcription-polymerase chain reaction (RT-PCR). Inflammatory cytokines were detected and analyzed by Western blotting and RT-PCR. We found that clodronate liposomes alleviated renal fibrosis and tissue damage on both Days 5 and 15. KIM-1, IL-10, and TGF-β were reduced significantly in the clodronate liposomes treatment group. However, TNF-α was not different between the clodronate liposomes treatment group and the phosphate-buffered saline treatment group on either Day 5 or Day 15. Thus, clodronate liposomes can alleviate renal fibrosis and tissue damage and reduce the inflammatory cytokines IL-10 and TGF-β, suggesting that clodronate liposomes alleviate renal fibrosis may because of M1/M2 polarization.


Association of plasma macrophage colony-stimulating factor with cardiovascular morbidity and all-cause mortality in chronic hemodialysis patients.

  • Xuan Deng‎ et al.
  • BMC nephrology‎
  • 2019‎

Cardiovascular disease (CVD) events are the main cause of death in long-term hemodialysis (HD) patients. Macrophage colony- stimulating factor (M-CSF) is actively involved in the formation of atherosclerosis and causes plaque instability, thrombosis and the development of acute coronary syndromes. However, little information is available on the role of M-CSF in HD patients. We aimed to investigate the association between plasma M-CSF levels and CVD events as well as all-cause mortality in patients undergoing long-term HD.


Cdc42-interacting protein-4 promotes TGF-Β1-induced epithelial-mesenchymal transition and extracellular matrix deposition in renal proximal tubular epithelial cells.

  • Shoujun Bai‎ et al.
  • International journal of biological sciences‎
  • 2012‎

Cdc42-interacting protein-4 (CIP4) is an F-BAR (Fer/CIP4 and Bin, amphiphysin, Rvs) family member that regulates membrane deformation and endocytosis, playing a key role in extracellular matrix (ECM) deposition and invasion of cancer cells. These processes are analogous to those observed during the initial epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells. The role of CIP4 in renal tubular EMT and renal tubulointerstitial fibrosis was investigated over the course of the current study, demonstrating that the expression of CIP4 increased in the tubular epithelia of 5/6-nephrectomized rats and TGF-β1 treated HK-2 cells. Endogenous CIP4 evidenced punctate localization throughout the cytosol, with elevated levels observed in the perinuclear region of HK-2 cells. Subsequent to TGF-β1 treatment, CIP4 expression increased, forming clusters at the cell periphery that gradually redistributed into the cytoplasm. Simultaneously, EMT induction in cells was confirmed by the prevalence of morphological changes, loss of E-cadherin, increase in α-SMA expression, and secretion of fibronectin. Overexpression of CIP4 promoted characteristics similar to those commonly observed in EMT, and small interfering RNA (siRNA) molecules capable of CIP4 knockdown were used to demonstrate reversed EMT. Cumulatively, results of the current study suggest that CIP4 promotes TGF-β1-induced EMT in tubular epithelial cells. Through this mechanism, CIP4 is capable of inducing ECM deposition and exacerbating progressive fibrosis in chronic renal failure.


A more accurate method acquirement by a comparison of the prediction equations for estimating glomerular filtration rate in Chinese patients with obstructive nephropathy.

  • Meixue Chen‎ et al.
  • BMC nephrology‎
  • 2016‎

Researchers have developed several equations to predict glomerular filtration rate (GFR) in patients with chronic kidney diseases (CKD). However, there are scarcely any studies performed to discern the best equation to estimate GFR in patients with pure obstructive nephropathy. In present study, we assessed the suitability of six prediction equations and compared their performance in eGFR evaluation for Chinese patients with obstructive nephropathy.


Role of Sema4C in TGF-β1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells.

  • Rui Zeng‎ et al.
  • Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association‎
  • 2011‎

The p38 mitogen-activated protein kinase (p38 MAPK) is an important intracellular signal transduction pathway involved in TGF-β1-induced epithelial-mesenchymal transition (EMT). Sema4C, a member of the semaphorin family, was found to be essential for the activation of p38 MAPK. However, the role of Sema4C in promoting TGF-β1-induced EMT is unclear.


Separated parabiont reveals the fate and lifespan of peripheral-derived immune cells in normal and ischaemia-induced injured kidneys.

  • Xuan Deng‎ et al.
  • Open biology‎
  • 2021‎

Immune cell infiltration plays a key role in acute kidney injury (AKI) to chronic kidney disease (CKD) progression. T lymphocytes, neutrophils, monocytes/macrophages and other immune cells regulate inflammation, tissue remodelling and repair. To determine the kinetics of accumulation of various immune cell populations, we established an animal model combining parabiosis and separation surgery to explore the fate and lifespan of peripheral leucocytes that migrate to the kidney. We found that peripheral T lymphocytes could survive for a long time (more than 14 days), whereas peripheral neutrophils survived for a short time in both healthy and ischaemia-induced damaged kidneys. Nearly half of the peripheral-derived macrophages disappeared after 14 days in normal kidneys, while their existing time in the inflammatory kidneys was prolonged. A fraction of F4/80high macrophages were renewed from the circulating monocyte pool. In addition, we found that after renal ischaemia reperfusion, neutrophils increased significantly in the early phase, and T lymphocytes mainly accumulated in the late stage, whereas macrophages infiltrated throughout AKI-CKD progression and were sustained longer in injured as opposed to normal kidneys. In conclusion, peripheral-derived macrophages, T lymphocytes and neutrophils exhibit different lifespans in the kidney, which may play different roles during AKI-CKD progression.


Pretreatment of Huaiqihuang extractum protects against cisplatin-induced nephrotoxicity.

  • Yujiao Guo‎ et al.
  • Scientific reports‎
  • 2018‎

Cisplatin is a commonly used chemotherapeutic agent in the treatment of different types of malignant tumors, but nephrotoxicity limits its usage. Therefore, in this study, we aimed to determine the possible protective effect of Huaiqihuang (HQH) extractum, a kind of Chinese herbal complex that consists of Trametes robiniophila Murr., Lycium barbarum and Polygonatum sibiricum, against nephrotoxicity induced by cisplatin in mice. We found that pretreatment with HQH significantly attenuated the cisplatin-induced increase in blood urea nitrogen (BUN), interstitial congestion, acute renal tubular injury and tubular cell apoptosis and necroptosis. It was further shown that HQH administration reduced cisplatin-induced release and nuclear-cytoplasmic translocation of HMGB1 and inactivated its downstream signaling molecules, TLR4 and NFκB, in renal tubular cells; as a result, HQH repressed cisplatin-induced TNF-α production. As dexamethasone (Dex) exerts renoprotective effects in severe Acute kidney injury (AKI), we compared it with HQH and found that HQH showed similar renoprotective effects to dexamethasone via similar mechanisms. Considering the potential side effects of corticosteroids, reducing the effectiveness of treatment and shortening survival in solid tumor patients, we suggest administration of HQH as a potential adjuvant for cisplatin therapy in solid tumor patients to preserve renal function.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: