Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 45 papers

Chronic hyperglycemia regulates microglia polarization through ERK5.

  • Congde Chen‎ et al.
  • Aging‎
  • 2019‎

Diabetic patients are prone to developing Alzheimer's disease (AD), in which microglia play a critical role. However, the direct effect of high glucose (HG) on microglia and the role of extracellular-signal-regulated kinase 5 (ERK5) signaling in this interaction have not been examined before. Here, these questions were addressed in microglia cultured in HG versus normal glucose (NG) conditions. Initially, HG induced microglial differentiation into the M2a phenotype with concomitant ERK5 activation. However, longer exposure to HG further induced differentiation of microglia into the M2b-like phenotype, followed by the M1-like subtype, concomitant with a gradual loss of ERK5 activation. BIX021895, a specific inhibitor of ERK5 activation, prevented M2a- differentiation of microglia, but induced earlier M2b-like polarization followed by M1-like polarization. Transfection of microglia with a sustained activated form of MEK5 (MEK5DD) prolonged the duration of the M2a phenotype, and prevented later differentiation into the M2b/M1 subtype. Conditioned media from the M2a-polarized microglia reduced neuronal cell apoptosis in hypoxic condition, while media from M2b-like or M1-like microglia enhanced apoptosis. Together, our data suggest that chronic hyperglycemia may induce a gradual alteration of microglia polarization into an increasingly proinflammatory subtype, which could be suppressed by sustained activation of ERK5 signaling.


Barrier function of the coelomic epithelium in the developing pancreas.

  • Ping Guo‎ et al.
  • Mechanisms of development‎
  • 2014‎

Tight spatial regulation of extracellular morphogen signaling within the close confines of a developing embryo is critical for proper organogenesis. Given the complexity of extracellular signaling in developing organs, together with the proximity of adjacent organs that use disparate signaling pathways, we postulated that a physical barrier to signaling may exist between organs in the embryo. Here we describe a previously unrecognized role for the embryonic coelomic epithelium in providing a physical barrier to contain morphogenic signaling in the developing mouse pancreas. This layer of cells appears to function both to contain key factors required for pancreatic epithelial differentiation, and to prevent fusion of adjacent organs during critical developmental windows. During early foregut development, this barrier appears to play a role in preventing splenic anlage-derived activin signaling from inducing intestinalization of the pancreas-specified epithelium.


GLP-1/Exendin-4 induces β-cell proliferation via the epidermal growth factor receptor.

  • Joseph Fusco‎ et al.
  • Scientific reports‎
  • 2017‎

Exendin-4 is a long acting glucagon-like peptide 1 (GLP-1) analogue that is an agonist for the GLP-1 receptor, a G-protein coupled receptor (GPCR). Exendin-4 is used to clinically improve glucose tolerance in diabetic patients due to its ability to enhance insulin secretion. In rodents, and possibly in humans, exendin-4 can stimulate β-cell proliferation. The exact mechanism of action to induce β-cell proliferation is not well understood. Here, using a β-cell specific epidermal growth factor receptor (EGFR) null mouse, we show that exendin-4 induced an increase in proliferation and β-cell mass through EGFR. Thus, our study sheds light on the role of EGFR signaling in the effects of exendin-4 on the control of blood glucose metabolism and β-cell mass.


Beta cells within single human islets originate from multiple progenitors.

  • Raphaël Scharfmann‎ et al.
  • PloS one‎
  • 2008‎

In both humans and rodents, glucose homeostasis is controlled by micro-organs called islets of Langerhans composed of beta cells, associated with other endocrine cell types. Most of our understanding of islet cell differentiation and morphogenesis is derived from rodent developmental studies. However, little is known about human islet formation. The lack of adequate experimental models has restricted the study of human pancreatic development to the histological analysis of different stages of pancreatic development. Our objective was to develop a new experimental model to (i) transfer genes into developing human pancreatic cells and (ii) validate gene transfer by defining the clonality of developing human islets.


Toxicant-Induced Metabolic Alterations in Lipid and Amino Acid Pathways Are Predictive of Acute Liver Toxicity in Rats.

  • Venkat R Pannala‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Liver disease and disorders associated with aberrant hepatocyte metabolism can be initiated via drug and environmental toxicant exposures. In this study, we tested the hypothesis that gene and metabolic profiling can reveal commonalities in liver response to different toxicants and provide the capability to identify early signatures of acute liver toxicity. We used Sprague Dawley rats and three classical hepatotoxicants: acetaminophen (2 g/kg), bromobenzene (0.4 g/kg), and carbon tetrachloride (0.3 g/kg), to identify early perturbations in liver metabolism after a single acute exposure dose. We measured changes in liver genes and plasma metabolites at two time points (5 and 10 h) and used genome-scale metabolic models to identify commonalities in liver responses across the three toxicants. We found strong correlations for gene and metabolic profiles between the toxicants, indicative of similarities in the liver response to toxicity. We identified several injury-specific pathways in lipid and amino acid metabolism that changed similarly across the three toxicants. Our findings suggest that several plasma metabolites in lipid and amino acid metabolism are strongly associated with the progression of liver toxicity, and as such, could be targeted and clinically assessed for their potential as early predictors of acute liver toxicity.


Improved therapeutic effects on diabetic foot by human mesenchymal stem cells expressing MALAT1 as a sponge for microRNA-205-5p.

  • Lingyan Zhu‎ et al.
  • Aging‎
  • 2019‎

Diabetic foot (DF) is a common complication of high severity for diabetes, a prevalent metabolic disorder that affects billions of people worldwide. Mesenchymal stem cells (MSCs) have a demonstrative therapeutic effect on DF, through their generation of pro-angiogenesis factors, like vascular endothelial growth factor (VEGF). Recently, genetically modified MSCs have been used in therapy and we have shown that depletion of micoRNA-205-5p (miR-205-5p) in human MSCs promotes VEGF-mediated therapeutic effects on DF. Here, we showed that a long non-coding RNA (lncRNA), MALAT1, is a competing endogenous RNA (ceRNA) for miR-205-5p, and is low expressed in human MSCs. Ectopic expression of MALAT1 in human MSCs significantly decreased miR-205-5p levels, resulting in upregulation of VEGF production and improved in vitro endothelial cell tube formation. In a DF model in immunodeficient NOD/SCID mice, transplantation of human miR-205-5p-depleted MSCs exhibited better therapeutic effects on DF recovery than control MSCs. Moreover, MALAT1-expressing MSCs showed even better therapeutic effects on DF recovery than miR-205-5p-depleted MSCs. This difference in DF recovery was shown to be associated with the levels of on-site vascularization. Together, our data suggest that MALAT1 functions as a sponge RNA for miR-205-5p to increase therapeutic effects of MSCs on DF.


β-cell Smad2 null mice have improved β-cell function and are protected from diet-induced hyperglycemia.

  • Mohamed Saleh‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Understanding signaling pathways that regulate pancreatic β-cell function to produce, store, and release insulin, as well as pathways that control β-cell proliferation, is vital to find new treatments for diabetes mellitus. Transforming growth factor-beta (TGF-β) signaling is involved in a broad range of β-cell functions. The canonical TGF-β signaling pathway functions through intracellular smads, including smad2 and smad3, to regulate cell development, proliferation, differentiation, and function in many organs. Here, we demonstrate the role of TGF-β/smad2 signaling in regulating mature β-cell proliferation and function using β-cell-specific smad2 null mutant mice. β-cell-specific smad2-deficient mice exhibited improved glucose clearance as demonstrated by glucose tolerance testing, enhanced in vivo and ex vivo glucose-stimulated insulin secretion, and increased β-cell mass and proliferation. Furthermore, when these mice were fed a high-fat diet to induce hyperglycemia, they again showed improved glucose tolerance, insulin secretion, and insulin sensitivity. In addition, ex vivo analysis of smad2-deficient islets showed that they displayed increased glucose-stimulated insulin secretion and upregulation of genes involved in insulin synthesis and insulin secretion. Thus, we conclude that smad2 could represent an attractive therapeutic target for type 2 diabetes mellitus.


Glucagon Resistance and Decreased Susceptibility to Diabetes in a Model of Chronic Hyperglucagonemia.

  • Nadejda Bozadjieva Kramer‎ et al.
  • Diabetes‎
  • 2021‎

Elevation of glucagon levels and increase in α-cell mass are associated with states of hyperglycemia in diabetes. Our previous studies have highlighted the role of nutrient signaling via mTOR complex 1 (mTORC1) regulation that controls glucagon secretion and α-cell mass. In the current studies we investigated the effects of activation of nutrient signaling by conditional deletion of the mTORC1 inhibitor, TSC2, in α-cells (αTSC2KO). We showed that activation of mTORC1 signaling is sufficient to induce chronic hyperglucagonemia as a result of α-cell proliferation, cell size, and mass expansion. Hyperglucagonemia in αTSC2KO was associated with an increase in glucagon content and enhanced glucagon secretion. This model allowed us to identify the effects of chronic hyperglucagonemia on glucose homeostasis by inducing insulin secretion and resistance to glucagon in the liver. Liver glucagon resistance in αTSC2KO mice was characterized by reduced expression of the glucagon receptor (GCGR), PEPCK, and genes involved in amino acid metabolism and urea production. Glucagon resistance in αTSC2KO mice was associated with improved glucose levels in streptozotocin-induced β-cell destruction and high-fat diet-induced glucose intolerance. These studies demonstrate that chronic hyperglucagonemia can improve glucose homeostasis by inducing glucagon resistance in the liver.


SMAD7 enhances adult β-cell proliferation without significantly affecting β-cell function in mice.

  • Anuradha Sehrawat‎ et al.
  • The Journal of biological chemistry‎
  • 2020‎

The interplay between the transforming growth factor β (TGF-β) signaling proteins, SMAD family member 2 (SMAD2) and 3 (SMAD3), and the TGF-β-inhibiting SMAD, SMAD7, seems to play a vital role in proper pancreatic endocrine development and also in normal β-cell function in adult pancreatic islets. Here, we generated conditional SMAD7 knockout mice by crossing insulin1Cre mice with SMAD7fx/fx mice. We also created a β cell-specific SMAD7-overexpressing mouse line by crossing insulin1Dre mice with HPRT-SMAD7/RosaGFP mice. We analyzed β-cell function in adult islets when SMAD7 was either absent or overexpressed in β cells. Loss of SMAD7 in β cells inhibited proliferation, and SMAD7 overexpression enhanced cell proliferation. However, alterations in basic glucose homeostasis were not detectable following either SMAD7 deletion or overexpression in β cells. Our results show that both the absence and overexpression of SMAD7 affect TGF-β signaling and modulates β-cell proliferation but does not appear to alter β-cell function. Reversible SMAD7 overexpression may represent an attractive therapeutic option to enhance β-cell proliferation without negative effects on β-cell function.


Placental growth factor in beta cells plays an essential role in gestational beta-cell growth.

  • Weixia Yang‎ et al.
  • BMJ open diabetes research & care‎
  • 2020‎

Pancreatic beta cells proliferate in response to metabolic requirements during pregnancy, while failure of this response may cause gestational diabetes. A member of the vascular endothelial growth factor family, placental growth factor (PlGF), typically plays a role in metabolic disorder and pathological circumstance. The expression and function of PlGF in the endocrine pancreas have not been reported and are addressed in the current study.


Conversion of α-Cells to β-Cells in the Postpartum Mouse Pancreas Involves Lgr5 Progeny.

  • Uylissa A Rodriguez‎ et al.
  • Diabetes‎
  • 2021‎

In contrast to the skin and the gut, where somatic stem cells and their niche are well characterized, a definitive pancreatic multipotent cell population in the adult pancreas has yet to be revealed. Of particular interest is whether such cells may be endogenous in patients with diabetes, and if so, can they be used for therapeutic purposes? In the current study, we used two separate reporter lines to target Cre-recombinase expression to the Lgr5- or glucagon-expressing cells in the pancreas. We provide evidence for the existence of a population of cells within and in the proximity of the ducts that transiently express the stem-cell marker Lgr5 during late gestational stages. Careful timing of tamoxifen treatment in Lgr5EGFP-IRES-CreERT2 ;R26 Tomato mice allowed us to show that these Lgr5-expressing progenitor cells can differentiate into α-cells during pregnancy. Furthermore, we report on a spontaneous lineage conversion of α- to β-cells specifically after parturition. The contribution of Lgr5 progeny to the β-cell compartment through an α-cell intermediate phase early after pregnancy appears to be part of a novel mechanism that would counterbalance against excessive β-cell mass reduction during β-cell involution.


A neurodevelopmental epigenetic programme mediated by SMARCD3-DAB1-Reelin signalling is hijacked to promote medulloblastoma metastasis.

  • Han Zou‎ et al.
  • Nature cell biology‎
  • 2023‎

How abnormal neurodevelopment relates to the tumour aggressiveness of medulloblastoma (MB), the most common type of embryonal tumour, remains elusive. Here we uncover a neurodevelopmental epigenomic programme that is hijacked to induce MB metastatic dissemination. Unsupervised analyses of integrated publicly available datasets with our newly generated data reveal that SMARCD3 (also known as BAF60C) regulates Disabled 1 (DAB1)-mediated Reelin signalling in Purkinje cell migration and MB metastasis by orchestrating cis-regulatory elements at the DAB1 locus. We further identify that a core set of transcription factors, enhancer of zeste homologue 2 (EZH2) and nuclear factor I X (NFIX), coordinates with the cis-regulatory elements at the SMARCD3 locus to form a chromatin hub to control SMARCD3 expression in the developing cerebellum and in metastatic MB. Increased SMARCD3 expression activates Reelin-DAB1-mediated Src kinase signalling, which results in a MB response to Src inhibition. These data deepen our understanding of how neurodevelopmental programming influences disease progression and provide a potential therapeutic option for patients with MB.


TGFβ receptor signaling is essential for inflammation-induced but not β-cell workload-induced β-cell proliferation.

  • Xiangwei Xiao‎ et al.
  • Diabetes‎
  • 2013‎

Protection and restoration of a functional β-cell mass are fundamental strategies for prevention and treatment of diabetes. Consequently, knowledge of signals that determine the functional β-cell mass is of immense clinical relevance. Transforming growth factor β (TGFβ) superfamily signaling pathways play a critical role in development and tissue specification. Nevertheless, the role of these pathways in adult β-cell homeostasis is not well defined. Here, we ablated TGFβ receptor I and II genes in mice undergoing two surgical β-cell replication models (partial pancreatectomy or partial duct ligation), representing two triggers for β-cell proliferation, increased β-cell workload and local inflammation, respectively. Our data suggest that TGFβ receptor signaling is necessary for baseline β-cell proliferation. By either provision of excess glucose or treatment with exogenous insulin, we further demonstrated that inflammation and increased β-cell workload are both stimulants for β-cell proliferation but are TGFβ receptor signaling dependent and independent, respectively. Collectively, by using a pancreas-specific TGFβ receptor-deleted mouse model, we have identified two distinct pathways that regulate adult β-cell proliferation. Our study thus provides important information for understanding β-cell proliferation during normal growth and in pancreatic diseases.


High-affinity Dkk1 receptor Kremen1 is internalized by clathrin-mediated endocytosis.

  • Sanjay K Mishra‎ et al.
  • PloS one‎
  • 2012‎

Kremens are high-affinity receptors for Dickkopf 1 (Dkk1) and regulate the Wnt/β-catenin signaling pathway by down-regulating the low-density lipoprotein receptor-related protein 6 (LRP6). Dkk1 competes with Wnt for binding to LRP6; binding of Dkk1 inhibits canonical signaling through formation of a ternary complex with Kremen. The majority of down-regulated clathrin-mediated endocytic receptors contain short conserved regions that recognize tyrosine or dileucine sorting motifs. In this study, we found that Kremen1 is internalized from the cell surface in a clathrin-dependent manner. Kremen1 contains an atypical dileucine motif with the sequence DXXXLV. Mutation of LV to AA in this motif blocked Kremen1 internalization; as reported previously for other proteins, the aspartic acid residue in Kremen1 is not critical. Inhibition of expression of the adaptor protein 2 (AP-2) or inhibition of clathrin by pitstop 2 also blocked Kremen1 internalization. The novel amino acid sequence identified in Kremen1 is similar to the motif previously identified in hydra, yeast, and other organisms known to signal from the trans-Golgi network to the endosomal compartment.


Impaired glucagon secretory responses in mice lacking the type 1 sulfonylurea receptor.

  • Chiyo Shiota‎ et al.
  • American journal of physiology. Endocrinology and metabolism‎
  • 2005‎

Pancreatic alpha-cells, like beta-cells, express ATP-sensitive K(+) (K(ATP)) channels. To determine the physiological role of K(ATP) channels in alpha-cells, we examined glucagon secretion in mice lacking the type 1 sulfonylurea receptor (Sur1). Plasma glucagon levels, which were increased in wild-type mice after an overnight fast, did not change in Sur1 null mice. Pancreas perfusion studies showed that Sur1 null pancreata lacked glucagon secretory responses to hypoglycemia and to synergistic stimulation by arginine. Pancreatic alpha-cells isolated from wild-type animals exhibited oscillations of intracellular free Ca(2+) concentration ([Ca(2+)](i)) in the absence of glucose that became quiescent when the glucose concentration was increased. In contrast, Sur1 null alpha-cells showed continuous oscillations in [Ca(2+)](i) regardless of the glucose concentration. These findings indicate that K(ATP) channels in alpha-cells play a key role in regulating glucagon secretion, thereby adding to the paradox of how mice that lack K(ATP) channels maintain euglycemia.


The role of ORMDL3/ATF6 in compensated beta cell proliferation during early diabetes.

  • Weixia Yang‎ et al.
  • Aging‎
  • 2019‎

Endoplasmic reticulum (ER) stress in beta cells induces a signaling network called the unfolded protein response (UPR), which plays a dual role in diabetes. A key regulator of ER-stress and UPR, the orosomucoid 1-like protein 3 (ORMDL3), has been shown to regulate airway remodeling through a major UPR protein, activating transcription factor 6 (ATF6), but the contribution of this regulatory axis to compensatory pancreatic beta cell proliferation in diabetes has not been studied. Here, we detected significantly lower levels of ORMDL3 mRNA in leukocytes of peripheral blood specimens from type 1 diabetes (T1D) children, compared to normal children. Moreover, these ORMDL3 levels in T1D children exhibited further decreases upon follow-up. ORMDL3 levels in islets from NOD mice, a mouse model for T1D in humans, showed a mild increase before diabetes onset, but a gradual decrease subsequently. In high glucose culture, beta cell proliferation, but not apoptosis, was increased by overexpression of ORMDL3 levels, likely mediated by its downstream factor ATF6. Mechanistically, ORMDL3 transcriptionally activated ATF6, which was confirmed in a promoter reporter assay. Together, our data suggest that ORMDL3 may increase beta cell proliferation through ATF6 as an early compensatory change in response to diabetes.


Mechanism-based identification of plasma metabolites associated with liver toxicity.

  • Venkat R Pannala‎ et al.
  • Toxicology‎
  • 2020‎

Early diagnosis of liver injuries caused by drugs or occupational exposures is necessary to enable effective treatments and prevent liver failure. Whereas histopathology remains the gold standard for assessing hepatotoxicity in animals, plasma aminotransferase levels are the primary measures for monitoring liver dysfunction in humans. In this study, using Sprague Dawley rats, we investigated whether integrated analyses of transcriptomic and metabolomic data with genome-scale metabolic models (GSMs) could identify early indicators of injury and provide new insights into the mechanisms of hepatotoxicity. We obtained concurrent measurements of gene-expression changes in the liver and kidneys, and expression changes along with metabolic profiles in the plasma and urine, from rats 5 or 10 h after exposing them to one of two classical hepatotoxicants, acetaminophen (2 g/kg) or bromobenzene (0.4 g/kg). Global multivariate analyses revealed that gene-expression changes in the liver and metabolic profiles in the plasma and urine of toxicant-treated animals differed from those of controls, even at time points much earlier than changes detected by conventional markers of liver injury. Furthermore, clustering analysis revealed that both the gene-expression changes in the liver and the metabolic profiles in the plasma induced by the two hepatotoxicants were highly correlated, indicating commonalities in the liver toxicity response. Systematic GSM-based analyses yielded metabolites associated with the mechanisms of toxicity and identified several lipid and amino acid metabolism pathways that were activated by both toxicants and those uniquely activated by each. Our findings suggest that several metabolite alterations, which are strongly associated with the mechanisms of toxicity and occur within injury-specific pathways (e.g., of bile acid and fatty acid metabolism), could be targeted and clinically assessed for their potential as early indicators of liver damage.


Natural Coevolution of Tumor and Immunoenvironment in Glioblastoma.

  • Lingxiang Wu‎ et al.
  • Cancer discovery‎
  • 2022‎

Isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) has a dismal prognosis. A better understanding of tumor evolution holds the key to developing more effective treatment. Here we study GBM's natural evolutionary trajectory by using rare multifocal samples. We sequenced 61,062 single cells from eight multifocal IDH wild-type primary GBMs and defined a natural evolution signature (NES) of the tumor. We show that the NES significantly associates with the activation of transcription factors that regulate brain development, including MYBL2 and FOSL2. Hypoxia is involved in inducing NES transition potentially via activation of the HIF1A-FOSL2 axis. High-NES tumor cells could recruit and polarize bone marrow-derived macrophages through activation of the FOSL2-ANXA1-FPR1/3 axis. These polarized macrophages can efficiently suppress T-cell activity and accelerate NES transition in tumor cells. Moreover, the polarized macrophages could upregulate CCL2 to induce tumor cell migration.


Ionizable lipid nanoparticles deliver mRNA to pancreatic β cells via macrophage-mediated gene transfer.

  • Jilian R Melamed‎ et al.
  • Science advances‎
  • 2023‎

Systemic messenger RNA (mRNA) delivery to organs outside the liver, spleen, and lungs remains challenging. To overcome this issue, we hypothesized that altering nanoparticle chemistry and administration routes may enable mRNA-induced protein expression outside of the reticuloendothelial system. Here, we describe a strategy for delivering mRNA potently and specifically to the pancreas using lipid nanoparticles. Our results show that delivering lipid nanoparticles containing cationic helper lipids by intraperitoneal administration produces robust and specific protein expression in the pancreas. Most resultant protein expression occurred within insulin-producing β cells. Last, we found that pancreatic mRNA delivery was dependent on horizontal gene transfer by peritoneal macrophage exosome secretion, an underappreciated mechanism that influences the delivery of mRNA lipid nanoparticles. We anticipate that this strategy will enable gene therapies for intractable pancreatic diseases such as diabetes and cancer.


Intraislet Pancreatic Ducts Can Give Rise to Insulin-Positive Cells.

  • Yousef El-Gohary‎ et al.
  • Endocrinology‎
  • 2016‎

A key question in diabetes research is whether new β-cells can be derived from endogenous, nonendocrine cells. The potential for pancreatic ductal cells to convert into β-cells is a highly debated issue. To date, it remains unclear what anatomical process would result in duct-derived cells coming to exist within preexisting islets. We used a whole-mount technique to directly visualize the pancreatic ductal network in young wild-type mice, young humans, and wild-type and transgenic mice after partial pancreatectomy. Pancreatic ductal networks, originating from the main ductal tree, were found to reside deep within islets in young mice and humans but not in mature mice or humans. These networks were also not present in normal adult mice after partial pancreatectomy, but TGF-β receptor mutant mice demonstrated formation of these intraislet duct structures after partial pancreatectomy. Genetic and viral lineage tracings were used to determine whether endocrine cells were derived from pancreatic ducts. Lineage tracing confirmed that pancreatic ductal cells can typically convert into new β-cells in normal young developing mice as well as in adult TGF-β signaling mutant mice after partial pancreatectomy. Here the direct visual evidence of ducts growing into islets, along with lineage tracing, not only represents strong evidence for duct cells giving rise to β-cells in the postnatal pancreas but also importantly implicates TGF-β signaling in this process.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: