Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 35 papers

Barrier function of the coelomic epithelium in the developing pancreas.

  • Ping Guo‎ et al.
  • Mechanisms of development‎
  • 2014‎

Tight spatial regulation of extracellular morphogen signaling within the close confines of a developing embryo is critical for proper organogenesis. Given the complexity of extracellular signaling in developing organs, together with the proximity of adjacent organs that use disparate signaling pathways, we postulated that a physical barrier to signaling may exist between organs in the embryo. Here we describe a previously unrecognized role for the embryonic coelomic epithelium in providing a physical barrier to contain morphogenic signaling in the developing mouse pancreas. This layer of cells appears to function both to contain key factors required for pancreatic epithelial differentiation, and to prevent fusion of adjacent organs during critical developmental windows. During early foregut development, this barrier appears to play a role in preventing splenic anlage-derived activin signaling from inducing intestinalization of the pancreas-specified epithelium.


Toxicant-Induced Metabolic Alterations in Lipid and Amino Acid Pathways Are Predictive of Acute Liver Toxicity in Rats.

  • Venkat R Pannala‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Liver disease and disorders associated with aberrant hepatocyte metabolism can be initiated via drug and environmental toxicant exposures. In this study, we tested the hypothesis that gene and metabolic profiling can reveal commonalities in liver response to different toxicants and provide the capability to identify early signatures of acute liver toxicity. We used Sprague Dawley rats and three classical hepatotoxicants: acetaminophen (2 g/kg), bromobenzene (0.4 g/kg), and carbon tetrachloride (0.3 g/kg), to identify early perturbations in liver metabolism after a single acute exposure dose. We measured changes in liver genes and plasma metabolites at two time points (5 and 10 h) and used genome-scale metabolic models to identify commonalities in liver responses across the three toxicants. We found strong correlations for gene and metabolic profiles between the toxicants, indicative of similarities in the liver response to toxicity. We identified several injury-specific pathways in lipid and amino acid metabolism that changed similarly across the three toxicants. Our findings suggest that several plasma metabolites in lipid and amino acid metabolism are strongly associated with the progression of liver toxicity, and as such, could be targeted and clinically assessed for their potential as early predictors of acute liver toxicity.


β-cell Smad2 null mice have improved β-cell function and are protected from diet-induced hyperglycemia.

  • Mohamed Saleh‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Understanding signaling pathways that regulate pancreatic β-cell function to produce, store, and release insulin, as well as pathways that control β-cell proliferation, is vital to find new treatments for diabetes mellitus. Transforming growth factor-beta (TGF-β) signaling is involved in a broad range of β-cell functions. The canonical TGF-β signaling pathway functions through intracellular smads, including smad2 and smad3, to regulate cell development, proliferation, differentiation, and function in many organs. Here, we demonstrate the role of TGF-β/smad2 signaling in regulating mature β-cell proliferation and function using β-cell-specific smad2 null mutant mice. β-cell-specific smad2-deficient mice exhibited improved glucose clearance as demonstrated by glucose tolerance testing, enhanced in vivo and ex vivo glucose-stimulated insulin secretion, and increased β-cell mass and proliferation. Furthermore, when these mice were fed a high-fat diet to induce hyperglycemia, they again showed improved glucose tolerance, insulin secretion, and insulin sensitivity. In addition, ex vivo analysis of smad2-deficient islets showed that they displayed increased glucose-stimulated insulin secretion and upregulation of genes involved in insulin synthesis and insulin secretion. Thus, we conclude that smad2 could represent an attractive therapeutic target for type 2 diabetes mellitus.


Glucagon Resistance and Decreased Susceptibility to Diabetes in a Model of Chronic Hyperglucagonemia.

  • Nadejda Bozadjieva Kramer‎ et al.
  • Diabetes‎
  • 2021‎

Elevation of glucagon levels and increase in α-cell mass are associated with states of hyperglycemia in diabetes. Our previous studies have highlighted the role of nutrient signaling via mTOR complex 1 (mTORC1) regulation that controls glucagon secretion and α-cell mass. In the current studies we investigated the effects of activation of nutrient signaling by conditional deletion of the mTORC1 inhibitor, TSC2, in α-cells (αTSC2KO). We showed that activation of mTORC1 signaling is sufficient to induce chronic hyperglucagonemia as a result of α-cell proliferation, cell size, and mass expansion. Hyperglucagonemia in αTSC2KO was associated with an increase in glucagon content and enhanced glucagon secretion. This model allowed us to identify the effects of chronic hyperglucagonemia on glucose homeostasis by inducing insulin secretion and resistance to glucagon in the liver. Liver glucagon resistance in αTSC2KO mice was characterized by reduced expression of the glucagon receptor (GCGR), PEPCK, and genes involved in amino acid metabolism and urea production. Glucagon resistance in αTSC2KO mice was associated with improved glucose levels in streptozotocin-induced β-cell destruction and high-fat diet-induced glucose intolerance. These studies demonstrate that chronic hyperglucagonemia can improve glucose homeostasis by inducing glucagon resistance in the liver.


SMAD7 enhances adult β-cell proliferation without significantly affecting β-cell function in mice.

  • Anuradha Sehrawat‎ et al.
  • The Journal of biological chemistry‎
  • 2020‎

The interplay between the transforming growth factor β (TGF-β) signaling proteins, SMAD family member 2 (SMAD2) and 3 (SMAD3), and the TGF-β-inhibiting SMAD, SMAD7, seems to play a vital role in proper pancreatic endocrine development and also in normal β-cell function in adult pancreatic islets. Here, we generated conditional SMAD7 knockout mice by crossing insulin1Cre mice with SMAD7fx/fx mice. We also created a β cell-specific SMAD7-overexpressing mouse line by crossing insulin1Dre mice with HPRT-SMAD7/RosaGFP mice. We analyzed β-cell function in adult islets when SMAD7 was either absent or overexpressed in β cells. Loss of SMAD7 in β cells inhibited proliferation, and SMAD7 overexpression enhanced cell proliferation. However, alterations in basic glucose homeostasis were not detectable following either SMAD7 deletion or overexpression in β cells. Our results show that both the absence and overexpression of SMAD7 affect TGF-β signaling and modulates β-cell proliferation but does not appear to alter β-cell function. Reversible SMAD7 overexpression may represent an attractive therapeutic option to enhance β-cell proliferation without negative effects on β-cell function.


Placental growth factor in beta cells plays an essential role in gestational beta-cell growth.

  • Weixia Yang‎ et al.
  • BMJ open diabetes research & care‎
  • 2020‎

Pancreatic beta cells proliferate in response to metabolic requirements during pregnancy, while failure of this response may cause gestational diabetes. A member of the vascular endothelial growth factor family, placental growth factor (PlGF), typically plays a role in metabolic disorder and pathological circumstance. The expression and function of PlGF in the endocrine pancreas have not been reported and are addressed in the current study.


Conversion of α-Cells to β-Cells in the Postpartum Mouse Pancreas Involves Lgr5 Progeny.

  • Uylissa A Rodriguez‎ et al.
  • Diabetes‎
  • 2021‎

In contrast to the skin and the gut, where somatic stem cells and their niche are well characterized, a definitive pancreatic multipotent cell population in the adult pancreas has yet to be revealed. Of particular interest is whether such cells may be endogenous in patients with diabetes, and if so, can they be used for therapeutic purposes? In the current study, we used two separate reporter lines to target Cre-recombinase expression to the Lgr5- or glucagon-expressing cells in the pancreas. We provide evidence for the existence of a population of cells within and in the proximity of the ducts that transiently express the stem-cell marker Lgr5 during late gestational stages. Careful timing of tamoxifen treatment in Lgr5EGFP-IRES-CreERT2 ;R26 Tomato mice allowed us to show that these Lgr5-expressing progenitor cells can differentiate into α-cells during pregnancy. Furthermore, we report on a spontaneous lineage conversion of α- to β-cells specifically after parturition. The contribution of Lgr5 progeny to the β-cell compartment through an α-cell intermediate phase early after pregnancy appears to be part of a novel mechanism that would counterbalance against excessive β-cell mass reduction during β-cell involution.


A neurodevelopmental epigenetic programme mediated by SMARCD3-DAB1-Reelin signalling is hijacked to promote medulloblastoma metastasis.

  • Han Zou‎ et al.
  • Nature cell biology‎
  • 2023‎

How abnormal neurodevelopment relates to the tumour aggressiveness of medulloblastoma (MB), the most common type of embryonal tumour, remains elusive. Here we uncover a neurodevelopmental epigenomic programme that is hijacked to induce MB metastatic dissemination. Unsupervised analyses of integrated publicly available datasets with our newly generated data reveal that SMARCD3 (also known as BAF60C) regulates Disabled 1 (DAB1)-mediated Reelin signalling in Purkinje cell migration and MB metastasis by orchestrating cis-regulatory elements at the DAB1 locus. We further identify that a core set of transcription factors, enhancer of zeste homologue 2 (EZH2) and nuclear factor I X (NFIX), coordinates with the cis-regulatory elements at the SMARCD3 locus to form a chromatin hub to control SMARCD3 expression in the developing cerebellum and in metastatic MB. Increased SMARCD3 expression activates Reelin-DAB1-mediated Src kinase signalling, which results in a MB response to Src inhibition. These data deepen our understanding of how neurodevelopmental programming influences disease progression and provide a potential therapeutic option for patients with MB.


TGFβ receptor signaling is essential for inflammation-induced but not β-cell workload-induced β-cell proliferation.

  • Xiangwei Xiao‎ et al.
  • Diabetes‎
  • 2013‎

Protection and restoration of a functional β-cell mass are fundamental strategies for prevention and treatment of diabetes. Consequently, knowledge of signals that determine the functional β-cell mass is of immense clinical relevance. Transforming growth factor β (TGFβ) superfamily signaling pathways play a critical role in development and tissue specification. Nevertheless, the role of these pathways in adult β-cell homeostasis is not well defined. Here, we ablated TGFβ receptor I and II genes in mice undergoing two surgical β-cell replication models (partial pancreatectomy or partial duct ligation), representing two triggers for β-cell proliferation, increased β-cell workload and local inflammation, respectively. Our data suggest that TGFβ receptor signaling is necessary for baseline β-cell proliferation. By either provision of excess glucose or treatment with exogenous insulin, we further demonstrated that inflammation and increased β-cell workload are both stimulants for β-cell proliferation but are TGFβ receptor signaling dependent and independent, respectively. Collectively, by using a pancreas-specific TGFβ receptor-deleted mouse model, we have identified two distinct pathways that regulate adult β-cell proliferation. Our study thus provides important information for understanding β-cell proliferation during normal growth and in pancreatic diseases.


High-affinity Dkk1 receptor Kremen1 is internalized by clathrin-mediated endocytosis.

  • Sanjay K Mishra‎ et al.
  • PloS one‎
  • 2012‎

Kremens are high-affinity receptors for Dickkopf 1 (Dkk1) and regulate the Wnt/β-catenin signaling pathway by down-regulating the low-density lipoprotein receptor-related protein 6 (LRP6). Dkk1 competes with Wnt for binding to LRP6; binding of Dkk1 inhibits canonical signaling through formation of a ternary complex with Kremen. The majority of down-regulated clathrin-mediated endocytic receptors contain short conserved regions that recognize tyrosine or dileucine sorting motifs. In this study, we found that Kremen1 is internalized from the cell surface in a clathrin-dependent manner. Kremen1 contains an atypical dileucine motif with the sequence DXXXLV. Mutation of LV to AA in this motif blocked Kremen1 internalization; as reported previously for other proteins, the aspartic acid residue in Kremen1 is not critical. Inhibition of expression of the adaptor protein 2 (AP-2) or inhibition of clathrin by pitstop 2 also blocked Kremen1 internalization. The novel amino acid sequence identified in Kremen1 is similar to the motif previously identified in hydra, yeast, and other organisms known to signal from the trans-Golgi network to the endosomal compartment.


Impaired glucagon secretory responses in mice lacking the type 1 sulfonylurea receptor.

  • Chiyo Shiota‎ et al.
  • American journal of physiology. Endocrinology and metabolism‎
  • 2005‎

Pancreatic alpha-cells, like beta-cells, express ATP-sensitive K(+) (K(ATP)) channels. To determine the physiological role of K(ATP) channels in alpha-cells, we examined glucagon secretion in mice lacking the type 1 sulfonylurea receptor (Sur1). Plasma glucagon levels, which were increased in wild-type mice after an overnight fast, did not change in Sur1 null mice. Pancreas perfusion studies showed that Sur1 null pancreata lacked glucagon secretory responses to hypoglycemia and to synergistic stimulation by arginine. Pancreatic alpha-cells isolated from wild-type animals exhibited oscillations of intracellular free Ca(2+) concentration ([Ca(2+)](i)) in the absence of glucose that became quiescent when the glucose concentration was increased. In contrast, Sur1 null alpha-cells showed continuous oscillations in [Ca(2+)](i) regardless of the glucose concentration. These findings indicate that K(ATP) channels in alpha-cells play a key role in regulating glucagon secretion, thereby adding to the paradox of how mice that lack K(ATP) channels maintain euglycemia.


Mechanism-based identification of plasma metabolites associated with liver toxicity.

  • Venkat R Pannala‎ et al.
  • Toxicology‎
  • 2020‎

Early diagnosis of liver injuries caused by drugs or occupational exposures is necessary to enable effective treatments and prevent liver failure. Whereas histopathology remains the gold standard for assessing hepatotoxicity in animals, plasma aminotransferase levels are the primary measures for monitoring liver dysfunction in humans. In this study, using Sprague Dawley rats, we investigated whether integrated analyses of transcriptomic and metabolomic data with genome-scale metabolic models (GSMs) could identify early indicators of injury and provide new insights into the mechanisms of hepatotoxicity. We obtained concurrent measurements of gene-expression changes in the liver and kidneys, and expression changes along with metabolic profiles in the plasma and urine, from rats 5 or 10 h after exposing them to one of two classical hepatotoxicants, acetaminophen (2 g/kg) or bromobenzene (0.4 g/kg). Global multivariate analyses revealed that gene-expression changes in the liver and metabolic profiles in the plasma and urine of toxicant-treated animals differed from those of controls, even at time points much earlier than changes detected by conventional markers of liver injury. Furthermore, clustering analysis revealed that both the gene-expression changes in the liver and the metabolic profiles in the plasma induced by the two hepatotoxicants were highly correlated, indicating commonalities in the liver toxicity response. Systematic GSM-based analyses yielded metabolites associated with the mechanisms of toxicity and identified several lipid and amino acid metabolism pathways that were activated by both toxicants and those uniquely activated by each. Our findings suggest that several metabolite alterations, which are strongly associated with the mechanisms of toxicity and occur within injury-specific pathways (e.g., of bile acid and fatty acid metabolism), could be targeted and clinically assessed for their potential as early indicators of liver damage.


Ionizable lipid nanoparticles deliver mRNA to pancreatic β cells via macrophage-mediated gene transfer.

  • Jilian R Melamed‎ et al.
  • Science advances‎
  • 2023‎

Systemic messenger RNA (mRNA) delivery to organs outside the liver, spleen, and lungs remains challenging. To overcome this issue, we hypothesized that altering nanoparticle chemistry and administration routes may enable mRNA-induced protein expression outside of the reticuloendothelial system. Here, we describe a strategy for delivering mRNA potently and specifically to the pancreas using lipid nanoparticles. Our results show that delivering lipid nanoparticles containing cationic helper lipids by intraperitoneal administration produces robust and specific protein expression in the pancreas. Most resultant protein expression occurred within insulin-producing β cells. Last, we found that pancreatic mRNA delivery was dependent on horizontal gene transfer by peritoneal macrophage exosome secretion, an underappreciated mechanism that influences the delivery of mRNA lipid nanoparticles. We anticipate that this strategy will enable gene therapies for intractable pancreatic diseases such as diabetes and cancer.


Intraislet Pancreatic Ducts Can Give Rise to Insulin-Positive Cells.

  • Yousef El-Gohary‎ et al.
  • Endocrinology‎
  • 2016‎

A key question in diabetes research is whether new β-cells can be derived from endogenous, nonendocrine cells. The potential for pancreatic ductal cells to convert into β-cells is a highly debated issue. To date, it remains unclear what anatomical process would result in duct-derived cells coming to exist within preexisting islets. We used a whole-mount technique to directly visualize the pancreatic ductal network in young wild-type mice, young humans, and wild-type and transgenic mice after partial pancreatectomy. Pancreatic ductal networks, originating from the main ductal tree, were found to reside deep within islets in young mice and humans but not in mature mice or humans. These networks were also not present in normal adult mice after partial pancreatectomy, but TGF-β receptor mutant mice demonstrated formation of these intraislet duct structures after partial pancreatectomy. Genetic and viral lineage tracings were used to determine whether endocrine cells were derived from pancreatic ducts. Lineage tracing confirmed that pancreatic ductal cells can typically convert into new β-cells in normal young developing mice as well as in adult TGF-β signaling mutant mice after partial pancreatectomy. Here the direct visual evidence of ducts growing into islets, along with lineage tracing, not only represents strong evidence for duct cells giving rise to β-cells in the postnatal pancreas but also importantly implicates TGF-β signaling in this process.


Identification of Newly Committed Pancreatic Cells in the Adult Mouse Pancreas.

  • Mairobys Socorro‎ et al.
  • Scientific reports‎
  • 2017‎

Multipotent epithelial cells with high Aldehyde dehydrogenase activity have been previously reported to exist in the adult pancreas. However, whether they represent true progenitor cells remains controversial. In this study, we isolated and characterized cells with ALDH activity in the adult mouse or human pancreas during physiological conditions or injury. We found that cells with ALDH activity are abundant in the mouse pancreas during early postnatal growth, pregnancy, and in mouse models of pancreatitis and type 1 diabetes (T1D). Importantly, a similar population of cells is found abundantly in healthy children, or in patients with pancreatitis or T1D. We further demonstrate that cells with ALDH activity can commit to either endocrine or acinar lineages, and can be divided into four sub-populations based on CD90 and Ecadherin expression. Finally, our in vitro and in vivo studies show that the progeny of ALDH1+/CD90-/Ecad- cells residing in the adult mouse pancreas have the ability to initiate Pancreatic and duodenal homeobox (Pdx1) expression for the first time. In summary, we provide evidence for the existence of a sortable population of multipotent non-epithelial cells in the adult pancreas that can commit to the pancreatic lineage following proliferation and mesenchymal to epithelial transition (MET).


Focal adhesion kinase-mediated signaling controls the onset of pancreatic cell differentiation.

  • Uylissa A Rodriguez‎ et al.
  • Development (Cambridge, England)‎
  • 2022‎

Signals from the endothelium play a pivotal role in pancreatic lineage commitment. As such, the fate of the epithelial cells relies heavily on the spatiotemporal recruitment of the endothelial cells to the embryonic pancreas. Although it is known that VEGFA secreted by the epithelium recruits the endothelial cells to the specific domains within the developing pancreas, the mechanism that controls the timing of such recruitment is poorly understood. Here, we have assessed the role of focal adhesion kinase (FAK) in mouse pancreatic development based on our observation that the presence of the enzymatically active form of FAK (pFAK) in the epithelial cells is inversely correlated with vessel recruitment. To study the role of FAK in the pancreas, we conditionally deleted the gene encoding focal adhesion kinase in the developing mouse pancreas. We found that homozygous deletion of Fak (Ptk2) during embryogenesis resulted in ectopic epithelial expression of VEGFA, abnormal endothelial recruitment and a delay in endocrine and acinar cell differentiation. The heterozygous mutants were born with no pancreatic phenotype but displayed gradual acinar atrophy due to cell polarity defects in exocrine cells. Together, our findings imply a role for FAK in controlling the timing of pancreatic lineage commitment and/or differentiation in the embryonic pancreas by preventing endothelial recruitment to the embryonic pancreatic epithelium.


Chemical pancreatectomy treats chronic pancreatitis while preserving endocrine function in preclinical models.

  • Mohamed Saleh‎ et al.
  • The Journal of clinical investigation‎
  • 2021‎

Chronic pancreatitis affects over 250,000 people in the US and millions worldwide. It is associated with chronic debilitating pain, pancreatic exocrine failure, and high risk of pancreatic cancer and usually progresses to diabetes. Treatment options are limited and ineffective. We developed a new potential therapy, wherein a pancreatic ductal infusion of 1%-2% acetic acid in mice and nonhuman primates resulted in a nonregenerative, near-complete ablation of the exocrine pancreas, with complete preservation of the islets. Pancreatic ductal infusion of acetic acid in a mouse model of chronic pancreatitis led to resolution of chronic inflammation and pancreatitis-associated pain. Furthermore, acetic acid-treated animals showed improved glucose tolerance and insulin secretion. The loss of exocrine tissue in this procedure would not typically require further management in patients with chronic pancreatitis because they usually have pancreatic exocrine failure requiring dietary enzyme supplements. Thus, this procedure, which should be readily translatable to humans through an endoscopic retrograde cholangiopancreatography (ERCP), may offer a potential innovative nonsurgical therapy for chronic pancreatitis that relieves pain and prevents the progression of pancreatic diabetes.


Time-dependent effects of endogenous hyperglucagonemia on glucose homeostasis and hepatic glucagon action.

  • Camila Lubaczeuski‎ et al.
  • JCI insight‎
  • 2023‎

Elevation of glucagon levels and increase in α cell proliferation is associated with states of hyperglycemia in diabetes. A better understanding of the molecular mechanisms governing glucagon secretion could have major implications for understanding abnormal responses to hypoglycemia in patients with diabetes and provide novel avenues for diabetes management. Using mice with inducible induction of Rheb1 in α cells (αRhebTg mice), we showed that short-term activation of mTORC1 signaling is sufficient to induce hyperglucagonemia through increased glucagon secretion. Hyperglucagonemia in αRhebTg mice was also associated with an increase in α cell size and mass expansion. This model allowed us to identify the effects of chronic and short-term hyperglucagonemia on glucose homeostasis by regulating glucagon signaling in the liver. Short-term hyperglucagonemia impaired glucose tolerance, which was reversible over time. Liver glucagon resistance in αRhebTg mice was associated with reduced expression of the glucagon receptor and genes involved in gluconeogenesis, amino acid metabolism, and urea production. However, only genes regulating gluconeogenesis returned to baseline upon improvement of glycemia. Overall, these studies demonstrate that hyperglucagonemia exerts a biphasic response on glucose metabolism: Short-term hyperglucagonemia lead to glucose intolerance, whereas chronic exposure to glucagon reduced hepatic glucagon action and improved glucose tolerance.


Genomics and metabolomics of early-stage thioacetamide-induced liver injury: An interspecies study between guinea pig and rat.

  • Patric Schyman‎ et al.
  • Toxicology and applied pharmacology‎
  • 2021‎

To study the complex processes involved in liver injuries, researchers rely on animal investigations, using chemically or surgically induced liver injuries, to extrapolate findings and infer human health risks. However, this presents obvious challenges in performing a detailed comparison and validation between the highly controlled animal models and development of liver injuries in humans. Furthermore, it is not clear whether there are species-dependent and -independent molecular initiating events or processes that cause liver injury before they eventually lead to end-stage liver disease. Here, we present a side-by-side study of rats and guinea pigs using thioacetamide to examine the similarities between early molecular initiating events during an acute-phase liver injury. We exposed Sprague Dawley rats and Hartley guinea pigs to a single dose of 25 or 100 mg/kg thioacetamide and collected blood plasma for metabolomic analysis and liver tissue for RNA-sequencing. The subsequent toxicogenomic analysis identified consistent liver injury trends in both genomic and metabolomic data within 24 and 33 h after thioacetamide exposure in rats and guinea pigs, respectively. In particular, we found species similarities in the key injury phenotypes of inflammation and fibrogenesis in our gene module analysis for liver injury phenotypes. We identified expression of several common genes (e.g., SPP1, TNSF18, SERPINE1, CLDN4, TIMP1, CD44, and LGALS3), activation of injury-specific KEGG pathways, and alteration of plasma metabolites involved in amino acid and bile acid metabolism as some of the key molecular processes that changed early upon thioacetamide exposure and could play a major role in the initiation of acute liver injury.


Mechanisms of Impaired Lung Development and Ciliation in Mannosidase-1-Alpha-2 (Man1a2) Mutants.

  • Mylarappa Ningappa‎ et al.
  • Frontiers in physiology‎
  • 2021‎

Ciliary defects cause heterogenous phenotypes related to mutation burden which lead to impaired development. A previously reported homozygous deletion in the Man1a2 gene causes lethal respiratory failure in newborn pups and decreased lung ciliation compared with wild type (WT) pups. The effects of heterozygous mutation, and the potential for rescue are not known.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: