Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 37 papers

Improving Detection of Arrhythmia Drug-Drug Interactions in Pharmacovigilance Data through the Implementation of Similarity-Based Modeling.

  • Santiago Vilar‎ et al.
  • PloS one‎
  • 2015‎

Identification of Drug-Drug Interactions (DDIs) is a significant challenge during drug development and clinical practice. DDIs are responsible for many adverse drug effects (ADEs), decreasing patient quality of life and causing higher care expenses. DDIs are not systematically evaluated in pre-clinical or clinical trials and so the FDA U. S. Food and Drug Administration relies on post-marketing surveillance to monitor patient safety. However, existing pharmacovigilance algorithms show poor performance for detecting DDIs exhibiting prohibitively high false positive rates. Alternatively, methods based on chemical structure and pharmacological similarity have shown promise in adverse drug event detection. We hypothesize that the use of chemical biology data in a post hoc analysis of pharmacovigilance results will significantly improve the detection of dangerous interactions. Our model integrates a reference standard of DDIs known to cause arrhythmias with drug similarity data. To compare similarity between drugs we used chemical structure (both 2D and 3D molecular structure), adverse drug side effects, chemogenomic targets, drug indication classes, and known drug-drug interactions. We evaluated the method on external reference standards. Our results showed an enhancement of sensitivity, specificity and precision in different top positions with the use of similarity measures to rank the candidates extracted from pharmacovigilance data. For the top 100 DDI candidates, similarity-based modeling yielded close to twofold precision enhancement compared to the proportional reporting ratio (PRR). Moreover, the method helps in the DDI decision making through the identification of the DDI in the reference standard that generated the candidate.


Computational Drug Target Screening through Protein Interaction Profiles.

  • Santiago Vilar‎ et al.
  • Scientific reports‎
  • 2016‎

The development of computational methods to discover novel drug-target interactions on a large scale is of great interest. We propose a new method for virtual screening based on protein interaction profile similarity to discover new targets for molecules, including existing drugs. We calculated Target Interaction Profile Fingerprints (TIPFs) based on ChEMBL database to evaluate drug similarity and generated new putative compound-target candidates from the non-intersecting targets in each pair of compounds. A set of drugs was further studied in monoamine oxidase B (MAO-B) and cyclooxygenase-1 (COX-1) enzyme through molecular docking and experimental assays. The drug ethoxzolamide and the natural compound piperlongumine, present in Piper longum L, showed hMAO-B activity with IC50 values of 25 and 65 μM respectively. Five candidates, including lapatinib, SB-202190, RO-316233, GW786460X and indirubin-3'-monoxime were tested against human COX-1. Compounds SB-202190 and RO-316233 showed a IC50 in hCOX-1 of 24 and 25 μM respectively (similar range as potent inhibitors such as diclofenac and indomethacin in the same experimental conditions). Lapatinib and indirubin-3'-monoxime showed moderate hCOX-1 activity (19.5% and 28% of enzyme inhibition at 25 μM respectively). Our modeling constitutes a multi-target predictor for large scale virtual screening with potential in lead discovery, repositioning and drug safety.


Improving reproducibility by using high-throughput observational studies with empirical calibration.

  • Martijn J Schuemie‎ et al.
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences‎
  • 2018‎

Concerns over reproducibility in science extend to research using existing healthcare data; many observational studies investigating the same topic produce conflicting results, even when using the same data. To address this problem, we propose a paradigm shift. The current paradigm centres on generating one estimate at a time using a unique study design with unknown reliability and publishing (or not) one estimate at a time. The new paradigm advocates for high-throughput observational studies using consistent and standardized methods, allowing evaluation, calibration and unbiased dissemination to generate a more reliable and complete evidence base. We demonstrate this new paradigm by comparing all depression treatments for a set of outcomes, producing 17 718 hazard ratios, each using methodology on par with current best practice. We furthermore include control hypotheses to evaluate and calibrate our evidence generation process. Results show good transitivity and consistency between databases, and agree with four out of the five findings from clinical trials. The distribution of effect size estimates reported in the literature reveals an absence of small or null effects, with a sharp cut-off at p = 0.05. No such phenomena were observed in our results, suggesting more complete and more reliable evidence.This article is part of a discussion meeting issue 'The growing ubiquity of algorithms in society: implications, impacts and innovations'.


Columbia Open Health Data, clinical concept prevalence and co-occurrence from electronic health records.

  • Casey N Ta‎ et al.
  • Scientific data‎
  • 2018‎

Columbia Open Health Data (COHD) is a publicly accessible database of electronic health record (EHR) prevalence and co-occurrence frequencies between conditions, drugs, procedures, and demographics. COHD was derived from Columbia University Irving Medical Center's Observational Health Data Sciences and Informatics (OHDSI) database. The lifetime dataset, derived from all records, contains 36,578 single concepts (11,952 conditions, 12,334 drugs, and 10,816 procedures) and 32,788,901 concept pairs from 5,364,781 patients. The 5-year dataset, derived from records from 2013-2017, contains 29,964 single concepts (10,159 conditions, 10,264 drugs, and 8,270 procedures) and 15,927,195 concept pairs from 1,790,431 patients. Exclusion of rare concepts (count ≤ 10) and Poisson randomization enable data sharing by eliminating risks to patient privacy. EHR prevalences are informative of healthcare consumption rates. Analysis of co-occurrence frequencies via relative frequency analysis and observed-expected frequency ratio are informative of associations between clinical concepts, useful for biomedical research tasks such as drug repurposing and pharmacovigilance. COHD is publicly accessible through a web application-programming interface (API) and downloadable from the Figshare repository. The code is available on GitHub.


Outlier concepts auditing methodology for a large family of biomedical ontologies.

  • Ling Zheng‎ et al.
  • BMC medical informatics and decision making‎
  • 2020‎

Summarization networks are compact summaries of ontologies. The "Big Picture" view offered by summarization networks enables to identify sets of concepts that are more likely to have errors than control concepts. For ontologies that have outgoing lateral relationships, we have developed the "partial-area taxonomy" summarization network. Prior research has identified one kind of outlier concepts, concepts of small partials-areas within partial-area taxonomies. Previously we have shown that the small partial-area technique works successfully for four ontologies (or their hierarchies).


Renin-angiotensin system blockers and susceptibility to COVID-19: an international, open science, cohort analysis.

  • Daniel R Morales‎ et al.
  • The Lancet. Digital health‎
  • 2021‎

Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) have been postulated to affect susceptibility to COVID-19. Observational studies so far have lacked rigorous ascertainment adjustment and international generalisability. We aimed to determine whether use of ACEIs or ARBs is associated with an increased susceptibility to COVID-19 in patients with hypertension.


Comparison of Cardiovascular and Safety Outcomes of Chlorthalidone vs Hydrochlorothiazide to Treat Hypertension.

  • George Hripcsak‎ et al.
  • JAMA internal medicine‎
  • 2020‎

Chlorthalidone is currently recommended as the preferred thiazide diuretic to treat hypertension, but no trials have directly compared risks and benefits.


Characterising the long-term clinical outcomes of 1190 hospitalised patients with COVID-19 in New York City: a retrospective case series.

  • Sherif M Shoucri‎ et al.
  • BMJ open‎
  • 2021‎

To characterise the long-term outcomes of patients with COVID-19 admitted to a large New York City medical centre at 3 and 6 months after hospitalisation and describe their healthcare usage, symptoms, morbidity and mortality.


Leveraging 3D chemical similarity, target and phenotypic data in the identification of drug-protein and drug-adverse effect associations.

  • Santiago Vilar‎ et al.
  • Journal of cheminformatics‎
  • 2016‎

Drug-target identification is crucial to discover novel applications for existing drugs and provide more insights about mechanisms of biological actions, such as adverse drug effects (ADEs). Computational methods along with the integration of current big data sources provide a useful framework for drug-target and drug-adverse effect discovery.


Feasibility of Prioritizing Drug-Drug-Event Associations Found in Electronic Health Records.

  • Juan M Banda‎ et al.
  • Drug safety‎
  • 2016‎

Several studies have demonstrated the ability to detect adverse events potentially related to multiple drug exposure via data mining. However, the number of putative associations produced by such computational approaches is typically large, making experimental validation difficult. We theorized that those potential associations for which there is evidence from multiple complementary sources are more likely to be true, and explored this idea using a published database of drug-drug-adverse event associations derived from electronic health records (EHRs).


Association of Hemoglobin A1c Levels With Use of Sulfonylureas, Dipeptidyl Peptidase 4 Inhibitors, and Thiazolidinediones in Patients With Type 2 Diabetes Treated With Metformin: Analysis From the Observational Health Data Sciences and Informatics Initiative.

  • Rohit Vashisht‎ et al.
  • JAMA network open‎
  • 2018‎

Consensus around an efficient second-line treatment option for type 2 diabetes (T2D) remains ambiguous. The availability of electronic medical records and insurance claims data, which capture routine medical practice, accessed via the Observational Health Data Sciences and Informatics network presents an opportunity to generate evidence for the effectiveness of second-line treatments.


Heritability and genome-wide association study of benign prostatic hyperplasia (BPH) in the eMERGE network.

  • Jacklyn N Hellwege‎ et al.
  • Scientific reports‎
  • 2019‎

Benign prostatic hyperplasia (BPH) results in a significant public health burden due to the morbidity caused by the disease and many of the available remedies. As much as 70% of men over 70 will develop BPH. Few studies have been conducted to discover the genetic determinants of BPH risk. Understanding the biological basis for this condition may provide necessary insight for development of novel pharmaceutical therapies or risk prediction. We have evaluated SNP-based heritability of BPH in two cohorts and conducted a genome-wide association study (GWAS) of BPH risk using 2,656 cases and 7,763 controls identified from the Electronic Medical Records and Genomics (eMERGE) network. SNP-based heritability estimates suggest that roughly 60% of the phenotypic variation in BPH is accounted for by genetic factors. We used logistic regression to model BPH risk as a function of principal components of ancestry, age, and imputed genotype data, with meta-analysis performed using METAL. The top result was on chromosome 22 in SYN3 at rs2710383 (p-value = 4.6 × 10-7; Odds Ratio = 0.69, 95% confidence interval = 0.55-0.83). Other suggestive signals were near genes GLGC, UNCA13, SORCS1 and between BTBD3 and SPTLC3. We also evaluated genetically-predicted gene expression in prostate tissue. The most significant result was with increasing predicted expression of ETV4 (chr17; p-value = 0.0015). Overexpression of this gene has been associated with poor prognosis in prostate cancer. In conclusion, although there were no genome-wide significant variants identified for BPH susceptibility, we present evidence supporting the heritability of this phenotype, have identified suggestive signals, and evaluated the association between BPH and genetically-predicted gene expression in prostate.


Risk of hydroxychloroquine alone and in combination with azithromycin in the treatment of rheumatoid arthritis: a multinational, retrospective study.

  • Jennifer C E Lane‎ et al.
  • The Lancet. Rheumatology‎
  • 2020‎

Hydroxychloroquine, a drug commonly used in the treatment of rheumatoid arthritis, has received much negative publicity for adverse events associated with its authorisation for emergency use to treat patients with COVID-19 pneumonia. We studied the safety of hydroxychloroquine, alone and in combination with azithromycin, to determine the risk associated with its use in routine care in patients with rheumatoid arthritis.


Large-scale evidence generation and evaluation across a network of databases (LEGEND): assessing validity using hypertension as a case study.

  • Martijn J Schuemie‎ et al.
  • Journal of the American Medical Informatics Association : JAMIA‎
  • 2020‎

To demonstrate the application of the Large-scale Evidence Generation and Evaluation across a Network of Databases (LEGEND) principles described in our companion article to hypertension treatments and assess internal and external validity of the generated evidence.


Contextualising adverse events of special interest to characterise the baseline incidence rates in 24 million patients with COVID-19 across 26 databases: a multinational retrospective cohort study.

  • Erica A Voss‎ et al.
  • EClinicalMedicine‎
  • 2023‎

Adverse events of special interest (AESIs) were pre-specified to be monitored for the COVID-19 vaccines. Some AESIs are not only associated with the vaccines, but with COVID-19. Our aim was to characterise the incidence rates of AESIs following SARS-CoV-2 infection in patients and compare these to historical rates in the general population.


Large-scale evidence generation and evaluation across a network of databases for type 2 diabetes mellitus (LEGEND-T2DM): a protocol for a series of multinational, real-world comparative cardiovascular effectiveness and safety studies.

  • Rohan Khera‎ et al.
  • BMJ open‎
  • 2022‎

Therapeutic options for type 2 diabetes mellitus (T2DM) have expanded over the last decade with the emergence of cardioprotective novel agents, but without such data for older drugs, leaving a critical gap in our understanding of the relative effects of T2DM agents on cardiovascular risk.


Deep Phenotyping on Electronic Health Records Facilitates Genetic Diagnosis by Clinical Exomes.

  • Jung Hoon Son‎ et al.
  • American journal of human genetics‎
  • 2018‎

Integration of detailed phenotype information with genetic data is well established to facilitate accurate diagnosis of hereditary disorders. As a rich source of phenotype information, electronic health records (EHRs) promise to empower diagnostic variant interpretation. However, how to accurately and efficiently extract phenotypes from heterogeneous EHR narratives remains a challenge. Here, we present EHR-Phenolyzer, a high-throughput EHR framework for extracting and analyzing phenotypes. EHR-Phenolyzer extracts and normalizes Human Phenotype Ontology (HPO) concepts from EHR narratives and then prioritizes genes with causal variants on the basis of the HPO-coded phenotype manifestations. We assessed EHR-Phenolyzer on 28 pediatric individuals with confirmed diagnoses of monogenic diseases and found that the genes with causal variants were ranked among the top 100 genes selected by EHR-Phenolyzer for 16/28 individuals (p < 2.2 × 10-16), supporting the value of phenotype-driven gene prioritization in diagnostic sequence interpretation. To assess the generalizability, we replicated this finding on an independent EHR dataset of ten individuals with a positive diagnosis from a different institution. We then assessed the broader utility by examining two additional EHR datasets, including 31 individuals who were suspected of having a Mendelian disease and underwent different types of genetic testing and 20 individuals with positive diagnoses of specific Mendelian etiologies of chronic kidney disease from exome sequencing. Finally, through several retrospective case studies, we demonstrated how combined analyses of genotype data and deep phenotype data from EHRs can expedite genetic diagnoses. In summary, EHR-Phenolyzer leverages EHR narratives to automate phenotype-driven analysis of clinical exomes or genomes, facilitating the broader implementation of genomic medicine.


A deep database of medical abbreviations and acronyms for natural language processing.

  • Lisa Grossman Liu‎ et al.
  • Scientific data‎
  • 2021‎

The recognition, disambiguation, and expansion of medical abbreviations and acronyms is of upmost importance to prevent medically-dangerous misinterpretation in natural language processing. To support recognition, disambiguation, and expansion, we present the Medical Abbreviation and Acronym Meta-Inventory, a deep database of medical abbreviations. A systematic harmonization of eight source inventories across multiple healthcare specialties and settings identified 104,057 abbreviations with 170,426 corresponding senses. Automated cross-mapping of synonymous records using state-of-the-art machine learning reduced redundancy, which simplifies future application. Additional features include semi-automated quality control to remove errors. The Meta-Inventory demonstrated high completeness or coverage of abbreviations and senses in new clinical text, a substantial improvement over the next largest repository (6-14% increase in abbreviation coverage; 28-52% increase in sense coverage). To our knowledge, the Meta-Inventory is the most complete compilation of medical abbreviations and acronyms in American English to-date. The multiple sources and high coverage support application in varied specialties and settings. This allows for cross-institutional natural language processing, which previous inventories did not support. The Meta-Inventory is available at https://bit.ly/github-clinical-abbreviations .


Polygenic risk alters the penetrance of monogenic kidney disease.

  • Atlas Khan‎ et al.
  • Nature communications‎
  • 2023‎

Chronic kidney disease (CKD) is determined by an interplay of monogenic, polygenic, and environmental risks. Autosomal dominant polycystic kidney disease (ADPKD) and COL4A-associated nephropathy (COL4A-AN) represent the most common forms of monogenic kidney diseases. These disorders have incomplete penetrance and variable expressivity, and we hypothesize that polygenic factors explain some of this variability. By combining SNP array, exome/genome sequence, and electronic health record data from the UK Biobank and All-of-Us cohorts, we demonstrate that the genome-wide polygenic score (GPS) significantly predicts CKD among ADPKD monogenic variant carriers. Compared to the middle tertile of the GPS for noncarriers, ADPKD variant carriers in the top tertile have a 54-fold increased risk of CKD, while ADPKD variant carriers in the bottom tertile have only a 3-fold increased risk of CKD. Similarly, the GPS significantly predicts CKD in COL4A-AN carriers. The carriers in the top tertile of the GPS have a 2.5-fold higher risk of CKD, while the risk for carriers in the bottom tertile is not different from the average population risk. These results suggest that accounting for polygenic risk improves risk stratification in monogenic kidney disease.


Practical considerations in genomic decision support: The eMERGE experience.

  • Timothy M Herr‎ et al.
  • Journal of pathology informatics‎
  • 2015‎

Genomic medicine has the potential to improve care by tailoring treatments to the individual. There is consensus in the literature that pharmacogenomics (PGx) may be an ideal starting point for real-world implementation, due to the presence of well-characterized drug-gene interactions. Clinical Decision Support (CDS) is an ideal avenue by which to implement PGx at the bedside. Previous literature has established theoretical models for PGx CDS implementation and discussed a number of anticipated real-world challenges. However, work detailing actual PGx CDS implementation experiences has been limited. Anticipated challenges include data storage and management, system integration, physician acceptance, and more.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: