Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Whole blood transcriptomics in cardiac surgery identifies a gene regulatory network connecting ischemia reperfusion with systemic inflammation.

  • Orfeas Liangos‎ et al.
  • PloS one‎
  • 2010‎

Cardiac surgery with cardiopulmonary bypass (CS/CPB) is associated with increased risk for postoperative complications causing substantial morbidity and mortality. To identify the molecular mechanisms underlying CS/CPB-induced pathophysiology we employed an integrative systems biology approach using the whole blood transcriptome as the sentinel organ.


Glutamine supplementation alleviates vasculopathy and corrects metabolic profile in an in vivo model of endothelial cell dysfunction.

  • Francesco Addabbo‎ et al.
  • PloS one‎
  • 2013‎

Endothelial Cell Dysfunction (ECD) is a recognized harbinger of a host of chronic cardiovascular diseases. Using a mouse model of ECD triggered by treatment with L-Nω-methylarginine (L-NMMA), we previously demonstrated that renal microvasculature displays a perturbed protein profile, including diminished expression of two key enzymes of the Krebs cycle associated with a Warburg-type suppression of mitochondrial metabolism. We hypothesized that supplementation with L-glutamine (GLN), that can enter the Krebs cycle downstream this enzymatic bottleneck, would normalize vascular function and alleviate mitochondrial dysfunction. To test this hypothesis, mice with chronic L-NMMA-induced ECD were co-treated with GLN at different concentrations for 2 months. Results confirmed that L-NMMA led to a defect in acetylcholine-induced relaxation of aortic rings that was dose-dependently prevented by GLN. In caveolin-1 transgenic mice characterized by eNOS inactivation, L-NMMA further impaired vasorelaxation which was partially rescued by GLN co-treatment. Pro-inflammatory profile induced by L-NMMA was blunted in mice co-treated with GLN. Using an LC/MS platform for metabolite profiling, we sought to identify metabolic perturbations associated with ECD and offset by GLN supplementation. 3453 plasma molecules could be detected with 100% frequency in mice from at least one treatment group. Among these, 37 were found to be differentially expressed in a 4-way comparison of control vs. LNMMA both with and without GLN. One of such molecules, hippuric acid, an "uremic toxin" was found to be elevated in our non-uremic mice receiving L-NMMA, but normalized by treatment with GLN. Ex vivo analysis of hippuric acid effects on vasomotion demonstrated that it significantly reduced acetylcholine-induced vasorelaxation of vascular rings. In conclusion, functional and metabolic profiling of animals with early ECD revealed macrovasculopathy and that supplementation GLN is capable of improving vascular function. Metabolomic analyses reveal elevation of hippuric acid, which may further exacerbate vasculopathy even before the development of uremia.


Administration of reconstituted polyphenol oil bodies efficiently suppresses dendritic cell inflammatory pathways and acute intestinal inflammation.

  • Elisabetta Cavalcanti‎ et al.
  • PloS one‎
  • 2014‎

Polyphenols are natural compounds capable of interfering with the inflammatory pathways of several in vitro model systems. In this study, we developed a stable and effective strategy to administer polyphenols to treat in vivo models of acute intestinal inflammation. The in vitro suppressive properties of several polyphenols were first tested and compared for dendritic cells (DCs) production of inflammatory cytokines. A combination of the polyphenols, quercetin and piperine, were then encapsulated into reconstituted oil bodies (OBs) in order to increase their stability. Our results showed that administration of low dose reconstituted polyphenol OBs inhibited LPS-mediated inflammatory cytokine secretion, including IL-6, IL-23, and IL-12, while increasing IL-10 and IL-1Rα production. Mice treated with the polyphenol-containing reconstituted OBs (ROBs) were partially protected from dextran sodium sulfate (DSS)-induced colitis and associated weight loss, while mortality and inflammatory scores revealed an overall anti-inflammatory effect that was likely mediated by impaired DC immune responses. Our study indicates that the administration of reconstituted quercetin and piperine-containing OBs may represent an effective and potent anti-inflammatory strategy to treat acute intestinal inflammation.


Intermittent losartan administration triggers cardiac post-conditioning in isolated rat hearts: role of BK2 receptors.

  • Luca Sgarra‎ et al.
  • PloS one‎
  • 2014‎

The angiotensin (Ang) and bradykinin (BK) tissue-system plays a pivotal role in post-conditioning, but the efficacy of angiotensin type 1 receptor (AT1R) blockers (ARBs) in post-ischemic strategies is still under investigation. We evaluated functional and morphological outcomes, together with activation of cytosolic RISK pathway kinases, in rat hearts subjected to losartan (LOS) or irbesartan (IRB) post-ischemic administration.


Calcimimetic R-568 vasodilatory effect on mesenteric vascular beds from normotensive (WKY) and spontaneously hypertensive (SHR) rats. Potential involvement of vascular smooth muscle cells (vSMCs).

  • Natalia Di Pietro‎ et al.
  • PloS one‎
  • 2018‎

The potential role of calcimimetics as vasculotropic agents has been suggested since the discovery that calcium sensing receptors (CaSRs) are expressed in cardiovascular tissues. However, whether this effect is CaSR-dependent or -independent is still unclear. In the present study the vascular activity of calcimimetic R-568 was investigated in mesenteric vascular beds (MVBs) isolated from Spontaneously Hypertensive rats (SHR) and the relative age-matched Wistar-Kyoto (WKY) control rats. Pre-constricted MBVs were perfused with increasing concentrations of R-568 (10 nM- 30 μM) resulting in a rapid dose-dependent vasodilatation. However, in MVBs from SHR this was preceded by a small but significant vasoconstriction at lowest nanomolar concentrations used (10-300 nM). Pre-treatment with pharmacological inhibitors of nitric oxide (NO) synthase (NOS, L-NAME), KCa channels (CTX), cyclo-oxygenase (INDO) and CaSR (Calhex) or the endothelium removal suggest that NO, CaSR and the endothelium itself contribute to the R-568 vasodilatory/vasoconstrictor effects observed respectively in WKY/SHR MVBs. Conversely, the vasodilatory effects resulted by highest R-568 concentration were independent of these factors. Then, the ability of lower R-568 doses (0.1-1 μM) to activate endothelial-NOS (eNOS) pathway in MVBs homogenates was evaluated. The Akt and eNOS phosphorylation levels resulted increased in WKY homogenates and Calhex significantly blocked this effect. Notably, this did not occur in the SHR. Similarly, vascular smooth muscle cells (vSMCs) stimulation with lower R-568 doses resulted in Akt activation and increased NO production in WKY but not in SHR cells. Interestingly, in these cells this was associated with the absence of the biologically active dimeric form of the CaSR thus potentially contributing to explain the impaired vasorelaxant effect observed in response to R-568 in MVB from SHR compared to WKY. Overall, these findings provide new insight on the mechanisms of action of the calcimimetic R-568 in modulating vascular tone both in physiological and pathological conditions such as hypertension.


The Krebs cycle and mitochondrial mass are early victims of endothelial dysfunction: proteomic approach.

  • Francesco Addabbo‎ et al.
  • The American journal of pathology‎
  • 2009‎

Endothelial cell dysfunction is associated with bioavailable nitric oxide deficiency and an excessive generation of reactive oxygen species. We modeled this condition by chronically inhibiting nitric oxide generation with subpressor doses of N(G)-monomethyl-L-arginine (L-NMMA) in C57B6 and Tie-2/green fluorescent protein mouse strains. L-NMMA-treated mice exhibited a slight reduction in vasorelaxation ability, as well as detectable abnormalities in soluble adhesion molecules (soluble intercellular adhesion molecule-1 and vascular cellular adhesion molecule-1, and matrix metalloproteinase 9), which represent surrogate indicators of endothelial dysfunction. Proteomic analysis of the isolated microvasculature using 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy revealed abnormal expression of a cluster of mitochondrial enzymes, which was confirmed using immunodetection. Aconitase-2 and enoyl-CoA-hydratase-1 expression levels were decreased in L-NMMA-treated animals; this phenotype was absent in nitric oxide synthase-1 and -3 knockout mice. Depletion of aconitase-2 and enoyl-CoA-hydratase-1 resulted in the inhibition of the Krebs cycle and enhanced pyruvate shunting toward the glycolytic pathway. To assess mitochondrial mass in vivo, co-localization of green fluorescent protein and MitoTracker fluorescence was detected by intravital microscopy. Quantitative analysis of fluorescence intensity showed that L-NMMA-treated animals exhibited lower fluorescence of MitoTracker in microvascular endothelia as a result of reduced mitochondrial mass. These findings provide conclusive and unbiased evidence that mitochondriopathy represents an early manifestation of endothelial dysfunction, shifting cell metabolism toward "metabolic hypoxia" through the selective depletion of both aconitase-2 and enoyl-CoA-hydratase-1. These findings may contribute to an early preclinical diagnosis of endothelial dysfunction.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: