Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Conserved chromosomal clustering of genes governed by chromatin regulators in Drosophila.

  • Enrique Blanco‎ et al.
  • Genome biology‎
  • 2008‎

The trithorax group (trxG) and Polycomb group (PcG) proteins are responsible for the maintenance of stable transcriptional patterns of many developmental regulators. They bind to specific regions of DNA and direct the post-translational modifications of histones, playing a role in the dynamics of chromatin structure.


Damage-responsive elements in Drosophila regeneration.

  • Elena Vizcaya-Molina‎ et al.
  • Genome research‎
  • 2018‎

One of the most important questions in regenerative biology is to unveil how and when genes change expression and trigger regeneration programs. The resetting of gene expression patterns during response to injury is governed by coordinated actions of genomic regions that control the activity of multiple sequence-specific DNA binding proteins. Using genome-wide approaches to interrogate chromatin function, we here identify the elements that regulate tissue recovery in Drosophila imaginal discs, which show a high regenerative capacity after genetically induced cell death. Our findings indicate there is global coregulation of gene expression as well as a regeneration program driven by different types of regulatory elements. Novel enhancers acting exclusively within damaged tissue cooperate with enhancers co-opted from other tissues and other developmental stages, as well as with endogenous enhancers that show increased activity after injury. Together, these enhancers host binding sites for regulatory proteins that include a core set of conserved transcription factors that control regeneration across metazoans.


Nutrition and PI3K/Akt signaling are required for p38-dependent regeneration.

  • José Esteban-Collado‎ et al.
  • Development (Cambridge, England)‎
  • 2021‎

Regeneration after damage requires early signals to trigger the tissue repair machinery. Reactive oxygen species (ROS) act as early signals that are sensed by the MAP3 kinase Ask1, which in turn activates by phosphorylation the MAP kinases p38 and JNK. The sustained or high activation of these kinases can result in apoptosis, whereas short or low activation can promote regeneration. Using the Ask1-dependent regeneration program, we demonstrate in Drosophila wing that PI3K/Akt signaling is necessary for Ask1 to activate p38, but not JNK. In addition, nutrient restriction or mutations that target Ser83 of the Drosophila Ask1 protein, a PI3K/Akt-sensitive residue, block regeneration. However, these effects can be reversed by the ectopic activation of p38, but not of JNK. Our results demonstrate that Ask1 controls the activation of p38 through Ser83, and that the phosphorylation of p38 during regeneration is nutrient sensitive. This mechanism is important for discriminating between p38 and JNK in the cells involved in tissue repair and regenerative growth.


Role of D-GADD45 in JNK-Dependent Apoptosis and Regeneration in Drosophila.

  • Carlos Camilleri-Robles‎ et al.
  • Genes‎
  • 2019‎

The GADD45 proteins are induced in response to stress and have been implicated in the regulation of several cellular functions, including DNA repair, cell cycle control, senescence, and apoptosis. In this study, we investigate the role of D-GADD45 during Drosophila development and regeneration of the wing imaginal discs. We find that higher expression of D-GADD45 results in JNK-dependent apoptosis, while its temporary expression does not have harmful effects. Moreover, D-GADD45 is required for proper regeneration of wing imaginal discs. Our findings demonstrate that a tight regulation of D-GADD45 levels is required for its correct function both, in development and during the stress response after cell death.


Oxidative Stress Is Associated with Overgrowth in Drosophila l(3)mbt Mutant Imaginal Discs.

  • Paula Climent-Cantó‎ et al.
  • Cells‎
  • 2022‎

The loss-of-function conditions for an l(3)malignant brain tumour (l(3)mbt) in larvae reared at 29 °C results in malignant brain tumours and hyperplastic imaginal discs. Unlike the former that have been extensively characterised, little is known about the latter. Here we report the results of a study of the hyperplastic l(3)mbt mutant wing imaginal discs. We identify the l(3)mbt wing disc tumour transcriptome and find it to include genes involved in reactive oxygen species (ROS) metabolism. Furthermore, we show the presence of oxidative stress in l(3)mbt hyperplastic discs, even in apoptosis-blocked conditions, but not in l(3)mbt brain tumours. We also find that chemically blocking oxidative stress in l(3)mbt wing discs reduces the incidence of wing disc overgrowths. Our results reveal the involvement of oxidative stress in l(3)mbt wing discs hyperplastic growth.


Evolution of selenophosphate synthetases: emergence and relocation of function through independent duplications and recurrent subfunctionalization.

  • Marco Mariotti‎ et al.
  • Genome research‎
  • 2015‎

Selenoproteins are proteins that incorporate selenocysteine (Sec), a nonstandard amino acid encoded by UGA, normally a stop codon. Sec synthesis requires the enzyme Selenophosphate synthetase (SPS or SelD), conserved in all prokaryotic and eukaryotic genomes encoding selenoproteins. Here, we study the evolutionary history of SPS genes, providing a map of selenoprotein function spanning the whole tree of life. SPS is itself a selenoprotein in many species, although functionally equivalent homologs that replace the Sec site with cysteine (Cys) are common. Many metazoans, however, possess SPS genes with substitutions other than Sec or Cys (collectively referred to as SPS1). Using complementation assays in fly mutants, we show that these genes share a common function, which appears to be distinct from the synthesis of selenophosphate carried out by the Sec- and Cys- SPS genes (termed SPS2), and unrelated to Sec synthesis. We show here that SPS1 genes originated through a number of independent gene duplications from an ancestral metazoan selenoprotein SPS2 gene that most likely already carried the SPS1 function. Thus, in SPS genes, parallel duplications and subsequent convergent subfunctionalization have resulted in the segregation to different loci of functions initially carried by a single gene. This evolutionary history constitutes a remarkable example of emergence and evolution of gene function, which we have been able to trace thanks to the singular features of SPS genes, wherein the amino acid at a single site determines unequivocally protein function and is intertwined to the evolutionary fate of the entire selenoproteome.


Ash2 acts as an ecdysone receptor coactivator by stabilizing the histone methyltransferase Trr.

  • Albert Carbonell‎ et al.
  • Molecular biology of the cell‎
  • 2013‎

The molting hormone ecdysone triggers chromatin changes via histone modifications that are important for gene regulation. On hormone activation, the ecdysone receptor (EcR) binds to the SET domain-containing histone H3 methyltransferase trithorax-related protein (Trr). Methylation of histone H3 at lysine 4 (H3K4me), which is associated with transcriptional activation, requires several cofactors, including Ash2. We find that ash2 mutants have severe defects in pupariation and metamorphosis due to a lack of activation of ecdysone-responsive genes. This transcriptional defect is caused by the absence of the H3K4me3 marks set by Trr in these genes. We present evidence that Ash2 interacts with Trr and is required for its stabilization. Thus we propose that Ash2 functions together with Trr as an ecdysone receptor coactivator.


Ask1 and Akt act synergistically to promote ROS-dependent regeneration in Drosophila.

  • Paula Santabárbara-Ruiz‎ et al.
  • PLoS genetics‎
  • 2019‎

How cells communicate to initiate a regenerative response after damage has captivated scientists during the last few decades. It is known that one of the main signals emanating from injured cells is the Reactive Oxygen Species (ROS), which propagate to the surrounding tissue to trigger the replacement of the missing cells. However, the link between ROS production and the activation of regenerative signaling pathways is not yet fully understood. We describe here the non-autonomous ROS sensing mechanism by which living cells launch their regenerative program. To this aim, we used Drosophila imaginal discs as a model system due to its well-characterized regenerative ability after injury or cell death. We genetically-induced cell death and found that the Apoptosis signal-regulating kinase 1 (Ask1) is essential for regenerative growth. Ask1 senses ROS both in dying and living cells, but its activation is selectively attenuated in living cells by Akt1, the core kinase component of the insulin/insulin-like growth factor pathway. Akt1 phosphorylates Ask1 in a secondary site outside the kinase domain, which attenuates its activity. This modulation of Ask1 activity results in moderate levels of JNK signaling in the living tissue, as well as in activation of p38 signaling, both pathways required to turn on the regenerative response. Our findings demonstrate a non-autonomous activation of a ROS sensing mechanism by Ask1 and Akt1 to replace the missing tissue after damage. Collectively, these results provide the basis for understanding the molecular mechanism of communication between dying and living cells that triggers regeneration.


Cabut/dTIEG associates with the transcription factor Yorkie for growth control.

  • Marina Ruiz-Romero‎ et al.
  • EMBO reports‎
  • 2015‎

The Drosophila transcription factor Cabut/dTIEG (Cbt) is a growth regulator, whose expression is modulated by different stimuli. Here, we determine Cbt association with chromatin and identify Yorkie (Yki), the transcriptional co-activator of the Hippo (Hpo) pathway as its partner. Cbt and Yki co-localize on common gene promoters, and the expression of target genes varies according to changes in Cbt levels. Down-regulation of Cbt suppresses the overgrowth phenotypes caused by mutations in expanded (ex) and yki overexpression, whereas its up-regulation promotes cell proliferation. Our results imply that Cbt is a novel partner of Yki that is required as a transcriptional co-activator in growth control.


ROS-Induced JNK and p38 Signaling Is Required for Unpaired Cytokine Activation during Drosophila Regeneration.

  • Paula Santabárbara-Ruiz‎ et al.
  • PLoS genetics‎
  • 2015‎

Upon apoptotic stimuli, epithelial cells compensate the gaps left by dead cells by activating proliferation. This has led to the proposal that dying cells signal to surrounding living cells to maintain homeostasis. Although the nature of these signals is not clear, reactive oxygen species (ROS) could act as a signaling mechanism as they can trigger pro-inflammatory responses to protect epithelia from environmental insults. Whether ROS emerge from dead cells and what is the genetic response triggered by ROS is pivotal to understand regeneration of Drosophila imaginal discs. We genetically induced cell death in wing imaginal discs, monitored the production of ROS and analyzed the signals required for repair. We found that cell death generates a burst of ROS that propagate to the nearby surviving cells. Propagated ROS activate p38 and induce tolerable levels of JNK. The activation of JNK and p38 results in the expression of the cytokines Unpaired (Upd), which triggers the JAK/STAT signaling pathway required for regeneration. Our findings demonstrate that this ROS/JNK/p38/Upd stress responsive module restores tissue homeostasis. This module is not only activated after cell death induction but also after physical damage and reveals one of the earliest responses for imaginal disc regeneration.


SOCS36E specifically interferes with Sevenless signaling during Drosophila eye development.

  • Isabel Almudi‎ et al.
  • Developmental biology‎
  • 2009‎

During the development of multicellular organisms the fate of individual cells is specified with great precision and reproducibility. Although classical genetic approaches led to the identification of many of the signaling pathways contributing to cell fate specification, they have provided little insight into the mechanisms that ensure robustness and reproducibility. We have used the specification of the R7 photoreceptor cells controlled by the Sevenless receptor tyrosine kinase (Sev) pathway to screen for modulators of pathway activity and to uncover the mechanisms underlying the robustness of cell fate decisions. Here we provide genetic evidence that the Drosophila SOCS36E adaptor protein containing an SH2 domain and a SOCS box acts as an attenuator of Sev signaling. Overexpression of Socs36E strongly suppresses the specification of extra R7 photoreceptor cells in response to constitutive activation of Sev, and loss of Socs36E function suppresses the loss of R7 cells when Sev activity is impaired. In a wild-type background, however, loss and gain of Socs36E function exhibits little effect on R7 specification. We also show that SH2 domain of SOCS36E is essential for this function in inhibiting Sev action and that Socs36E expression is suppressed by high Sev pathway activity. In our model, only the cell able to activate high levels of receptor tyrosine kinase signaling will repress SOCS36E expression, reduce the negative effect on Sev signaling and allow this cell to differentiate into R7. In contrast, the remaining cells fail to receive high signaling, and thus maintain high levels of SOCS36E. This represses residual Sev activity and blocks R7 development. Therefore, Socs36E constitutes a novel partially redundant feedback mechanism that contributes to the robustness of R7 specification. The SOCS family of adaptor proteins may have evolved as modulators of specific signaling pathways that contribute to the robustness and precision of cell fate specification.


Functional dissection of the ash2 and ash1 transcriptomes provides insights into the transcriptional basis of wing phenotypes and reveals conserved protein interactions.

  • Sergi Beltran‎ et al.
  • Genome biology‎
  • 2007‎

The trithorax group (trxG) genes absent, small or homeotic discs 1 (ash1) and 2 (ash2) were isolated in a screen for mutants with abnormal imaginal discs. Mutations in either gene cause homeotic transformations but Hox genes are not their only targets. Although analysis of double mutants revealed that ash2 and ash1 mutations enhance each other's phenotypes, suggesting they are functionally related, it was shown that these proteins are subunits of distinct complexes.


glaikit is essential for the formation of epithelial polarity and neuronal development.

  • John Dunlop‎ et al.
  • Current biology : CB‎
  • 2004‎

Epithelial cells have a distinctive polarity based on the restricted distribution of proteins and junctional complexes along an apical-basal axis. Studying the formation of the polarized ectoderm of the Drosophila embryo has identified a number of the molecules that establish this polarity. The Crumbs (Crb) complex is one of three separate complexes that cooperate to control epithelial polarity and the formation of zonula adherens. Here we show that glaikit (gkt), a member of the phospholipase D superfamily, is essential for the formation of epithelial polarity and for neuronal development during Drosophila embryogenesis. In epithelial cells, gkt acts to localize the Crb complex of proteins to the apical lateral membrane. Loss of gkt during neuronal development leads to a severe CNS architecture disruption that is not dependent on the Crb pathway but probably results from the disrupted localization of other membrane proteins. A mutation in the human homolog of gkt causes the neurodegenerative disease spinocerebellar ataxia with neuropathy (SCAN1), making it possible that a failure of membrane protein localization is a cause of this disease.


Gene expression following induction of regeneration in Drosophila wing imaginal discs. Expression profile of regenerating wing discs.

  • Enrique Blanco‎ et al.
  • BMC developmental biology‎
  • 2010‎

Regeneration is the ability of an organism to rebuild a body part that has been damaged or amputated, and can be studied at the molecular level using model organisms. Drosophila imaginal discs, which are the larval primordia of adult cuticular structures, are capable of undergoing regenerative growth after transplantation and in vivo culture into the adult abdomen.


Genome-wide chromatin occupancy analysis reveals a role for ASH2 in transcriptional pausing.

  • Sílvia Pérez-Lluch‎ et al.
  • Nucleic acids research‎
  • 2011‎

An important mechanism for gene regulation involves chromatin changes via histone modification. One such modification is histone H3 lysine 4 trimethylation (H3K4me3), which requires histone methyltranferase complexes (HMT) containing the trithorax-group (trxG) protein ASH2. Mutations in ash2 cause a variety of pattern formation defects in the Drosophila wing. We have identified genome-wide binding of ASH2 in wing imaginal discs using chromatin immunoprecipitation combined with sequencing (ChIP-Seq). Our results show that genes with functions in development and transcriptional regulation are activated by ASH2 via H3K4 trimethylation in nearby nucleosomes. We have characterized the occupancy of phosphorylated forms of RNA Polymerase II and histone marks associated with activation and repression of transcription. ASH2 occupancy correlates with phosphorylated forms of RNA Polymerase II and histone activating marks in expressed genes. Additionally, RNA Polymerase II phosphorylation on serine 5 and H3K4me3 are reduced in ash2 mutants in comparison to wild-type flies. Finally, we have identified specific motifs associated with ASH2 binding in genes that are differentially expressed in ash2 mutants. Our data suggest that recruitment of the ASH2-containing HMT complexes is context specific and points to a function of ASH2 and H3K4me3 in transcriptional pausing control.


Prostate tumor OVerexpressed-1 (PTOV1) down-regulates HES1 and HEY1 notch targets genes and promotes prostate cancer progression.

  • Lide Alaña‎ et al.
  • Molecular cancer‎
  • 2014‎

PTOV1 is an adaptor protein with functions in diverse processes, including gene transcription and protein translation, whose overexpression is associated with a higher proliferation index and tumor grade in prostate cancer (PC) and other neoplasms. Here we report its interaction with the Notch pathway and its involvement in PC progression.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: