Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 182 papers

Physapubescin selectively induces apoptosis in VHL-null renal cell carcinoma cells through down-regulation of HIF-2α and inhibits tumor growth.

  • Lixia Chen‎ et al.
  • Scientific reports‎
  • 2016‎

We have purified physapubescin, a predominant steroidal lactone, from medicinal plant Physalis pubescens L., commonly named as "hairy groundcherry" in English and "Deng-Long-Cao" in Chinese. Von Hippel-Lindau (VHL)-null 786-O, RCC4 and A498 Renal Cell Carcinoma (RCC) cell lines expressing high levels of Hypoxia Inducible Factor (HIF)-2α are more sensitive to physapubescin-mediated apoptosis and growth inhibitory effect than VHL wild-type Caki-2 and ACHN RCC cell lines. Restoration of VHL in RCC4 cells attenuated the growth inhibitory effect of physapubescin. Physapubescin decreases the expression of HIF-2α and increases the expression of CCAAT/enhancer-binding protein homologus protein (CHOP), which leads to up-regulation of death receptor 5 (DR5), activation of caspase-8 and -3, cleavage of poly (ADP-Ribose) polymerase (PARP) and apoptosis. Under hypoxia conditions, the apoptotic and growth inhibitory effects of physapubescin are further enhanced. Additionally, physapubescin synergizes with TNF-related apoptosis-inducing ligand (TRAIL) for markedly enhanced induction of apoptosis in VHL-null 786-O cells but not in VHL wild-type Caki-2 cells. Physapubescin significantly inhibited in vivo angiogenesis in the 786-O xenograft. Physapubescin as a novel agent for elimination of VHL-null RCC cells via apoptosis is warranted for further investigation.


Inhibition of caspase-9 by oridonin, a diterpenoid isolated from Rabdosia rubescens, augments apoptosis in human laryngeal cancer cells.

  • Ning Kang‎ et al.
  • International journal of oncology‎
  • 2015‎

Rabdosia rubescens, a commonly used traditional Chinese medicine, has increasingly gained attention for its use as an antitumor herb. Oridonin, a bioactive diterpenoid isolated from Rabdosia rubescens, has been reported to induce apoptosis in human laryngeal cancer HEp-2 cells by our group. Here, we made unexpected observations that the caspase-9 inhibitor (C9i) enhanced apoptosis in response to selected stimuli, and HEp-2 cells which were made deficient in caspase-9 using siRNA exhibited no resistance to apoptotic signals and actually demonstrated increased apoptotic sensitivity to oridonin. The results were reversed by the transfection of an exogenous caspase-9 expression vector. Caspase-9 reduced sensitivity to apoptotic stimuli through reactive oxygen species (ROS)-suppressing and autophagy-promoting methods. ROS triggered the progression of apoptosis through activation of both the caspase-9-independent mitochondrial pathway and death receptor pathways, and the autophagy had an anti-apoptotic function in oridonin-treated HEp-2 cells. These collective results suggest that oridonin targets caspase-9 to alter ROS production and autophagy situation to promote HEp-2 cell apoptosis. Therefore, oridonin has the potential to be developed as an anticancer agent, and the combination of oridonin with those agents leading to reduction of caspase-9 expression in tumor cells could represent a novel approach to human laryngeal cancer treatment.


In-vivo absorption of pinocembrin-7-O-β-D-glucoside in rats and its in-vitro biotransformation.

  • Wei-Wei Guo‎ et al.
  • Scientific reports‎
  • 2016‎

Pinocembrin-7-O-β-D-glucoside (PCBG), a flavonoid isolated from Penthorum chinense Pursh., has significant liver-protecting effects. The pharmacokinetics of PCBG and its major metabolite pinocembrin (PCB) in rats were investigated in this study. A sensitive and accurate UPLC-MS/MS method was developed and validated for the simultaneous quantitative determination of PCBG and PCB in rat plasma after oral and intravenous administration of PCBG. After intravenous administration, PCBG was the main form in plasma. In contrast, after oral administration, the concentration of PCB was about 4-fold higher than that of PCBG, indicating that PCBG was metabolized to PCB. We also investigated the biotransformation of PCBG in vitro in order to understand whether the pH and the intestinal flora of gastrointestinal tract could affect the metabolism of PCBG. PCBG was incubated in rat plasma, liver homogenization, gastrointestial contents, liver microsomes (RLM) and hepatocytes in vitro. The data showed that PCB was quickly formed in the gastrointestinal incubation but PCBG was converted to PCB gradually in other incubations. The results indicated that the majority of PCBG was converted to its aglycone PCB in digestive system after oral administration, and PCB could be the active ingredient in the body.


Characterization of the In Vivo and In Vitro Metabolites of Linarin in Rat Biosamples and Intestinal Flora Using Ultra-High Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry.

  • Xinchi Feng‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Linarin, a flavone glycoside, is considered to be a promising natural product due to its diverse pharmacological activities, including analgesic, antipyretic, anti-inflammatory and hepatoprotective activities. In this research, the metabolites of linarin in rat intestinal flora and biosamples were characterized using ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS/MS). Three ring cleavage metabolites (4-hydroxybenzoic acid, 4-hydroxy benzaldehyde and phloroglucinol) were detected after linarin was incubated with rat intestinal flora. A total of 17 metabolites, including one ring cleavage metabolite (phloroglucinol), were identified in rat biosamples after oral administration of linarin. These results indicate that linarin was able to undergo ring fission metabolism in intestinal flora and that hydrolysis, demethylation, glucuronidation, sulfation, glycosylation, methylation and ring cleavage were the major metabolic pathways. This study provides scientific support for the understanding of the metabolism of linarin and contributes to the further development of linarin as a drug candidate.


A Metalloprotease Homolog Venom Protein From a Parasitoid Wasp Suppresses the Toll Pathway in Host Hemocytes.

  • Zhe Lin‎ et al.
  • Frontiers in immunology‎
  • 2018‎

Parasitoid wasps depend on a variety of maternal virulence factors to ensure successful parasitism. Encapsulation response carried out by host hemocytes is one of the major host immune responses toward limiting endoparasitoid wasp offspring production. We found that VRF1, a metalloprotease homolog venom protein identified from the endoparasitoid wasp, Microplitis mediator, could modulate egg encapsulation in its host, the cotton bollworm, Helicoverpa armigera. Here, we show that the VRF1 proenzyme is cleaved after parasitism, and that the C-terminal fragment containing the catalytic domain enters host hemocytes 6 h post-parasitism. Furthermore, using yeast two-hybrid and pull-down assays, VRF1 is shown to interact with the H. armigera NF-κB factor, Dorsal. We also show that overexpressed of VRF1 in an H. armigera cell line cleaved Dorsal in vivo. Taken together, our results have revealed a novel mechanism by which a component of endoparasitoid wasp venom interferes with the Toll signaling pathway in the host hemocytes.


Physalins V-IX, 16,24-cyclo-13,14-seco withanolides from Physalis angulata and their antiproliferative and anti-inflammatory activities.

  • Cheng-Peng Sun‎ et al.
  • Scientific reports‎
  • 2017‎

Five new physalins, including a novel 1,10-seco one, physalin V (1), a tricarboxylic acid cycle one, physalin VIII (5), a rare 11,15-cyclo one, physalin IX (6), and two new ones, physalins VI (2) and VII (4) were isolated from stems and leaves of Physalis angulata together with eleven known analogues (3 and 7-16). Their structures were established by MS, IR, UV, and NMR spectroscopic analysis, together with the X-ray diffraction analysis of neophysalin, physalin P (12), and the structure of physalin D1 (3) has been revised here. These isolated compounds were evaluated for their antiproliferative activities against human cancer cells (C4-2B, 22Rv1, 786-O, A-498, ACHN, and A375-S2) and inhibitory effects on nitric oxide production. Compounds 9 and 10 showed antiproliferative activities against all tested human cancer cells with IC50 values of 0.24-3.17 μM. Compounds 1, 3, 4, 9, 10, 13, 14, and 16 exhibited inhibitory activities against NO production. The IC50 values of compounds 9, 10, 13, and 16 were between 0.32 and 4.03 μM, while compounds 1, 3, 4, and 14 had IC50 values of 12.83-34.19 μM. Herein, plausible biosynthetic pathways for rare structures 1 and 6 and structure-activity relationships on the inhibition of NO production for all isolated compounds are discussed.


Ferroptosis Promotes Photodynamic Therapy: Supramolecular Photosensitizer-Inducer Nanodrug for Enhanced Cancer Treatment.

  • Ting Zhu‎ et al.
  • Theranostics‎
  • 2019‎

The noninvasive nature of photodynamic therapy (PDT) enables the preservation of organ function in cancer patients. However, PDT is impeded by hypoxia in the tumor microenvironment (TME) caused by high intracellular oxygen (O2) consumption and distorted tumor blood vessels. Therefore, increasing oxygen generation in the TME would be a promising methodology for enhancing PDT. Herein, we proposed a concept of ferroptosis-promoted PDT based on the biochemical characteristics of cellular ferroptosis, which improved the PDT efficacy significantly by producing reactive oxygen species (ROS) and supplying O2 sustainably through the Fenton reaction. In contrast to traditional strategies that increase O2 based on decomposition of limited concentration of hydrogen peroxide (H2O2), our methodology could maintain the concentration of H2O2 and O2 through the Fenton reaction. Methods: For its association with sensitivity to ferroptosis, solute carrier family 7 member 11 (SLC7A11) expression was characterized by bioinformatics analysis and immunohistochemistry of oral tongue squamous cell carcinoma (OTSCC) specimens. Afterwards, the photosensitizer chlorin e6 (Ce6) and the ferroptosis inducer erastin were self-assembled into a novel supramolecular Ce6-erastin nanodrug through hydrogen bonding and π-π stacking. Then, the obtained Ce6-erastin was extensively characterized and its anti-tumor efficacy towards OTSCC was evaluated both in vitro and in vivo. Results: SLC7A11 expression is found to be upregulated in OTSCC, which is a potential target for ferroptosis-mediated OTSCC treatment. Ce6-erastin nanoparticles exhibited low cytotoxicity to normal tissues. More significantly, The over-accumulated intracellular ROS, increased O2 concentration and inhibited SLC7A11 expression lead to enhanced toxicity to CAL-27 cells and satisfactory antitumor effects to xenograft tumour mouse model upon irradiation. Conclusion: Our ferroptosis promoted PDT approach markedly enhances anticancer actions by relieving hypoxia and promoting ROS production, thereby our work provides a new approach for overcoming hypoxia-associated resistance of PDT in cancer treatment.


MiTF is Associated with Chemoresistance to Cisplatin in A549 Lung Cancer Cells via Modulating Lysosomal Biogenesis and Autophagy.

  • Wei Li‎ et al.
  • Cancer management and research‎
  • 2020‎

Non-small cell lung carcinoma (NSCLC) is often fatal; advanced NSCLC has a 5-year survival rate less than 20%. Platinum-based chemotherapy, in particular, cis-diamminedichloroplatinum (II) (cisplatin or DDP), is employed for the treatment of NSCLC; however, the drug resistance occurs frequently. Autophagy is defined as the process of intracellular degradation of cytoplasmic materials in the lysosome; however, the correlation between autophagy and drug resistance remains controversial. Herein, we investigated the correlation between autophagy and cisplatin resistance and also explored the underlying mechanisms.


Recombinant SARS-CoV-2 RBD with a built in T helper epitope induces strong neutralization antibody response.

  • Qiu-Dong Su‎ et al.
  • Vaccine‎
  • 2021‎

Without approved vaccines and specific treatments, COVID-19 is spreading around the world with above 26 million cases and approximately 864 thousand deaths until now. An efficacious and affordable vaccine is urgently needed. The Val308 - Gly548 of spike protein of SARS-CoV-2 linked with Gln830 - Glu843 of Tetanus toxoid (TT peptide) (designated as S1-4) and without TT peptide (designated as S1-5) were expressed and renatured. The antigenicity and immunogenicity of S1-4 were evaluated by Western Blotting (WB) in vitro and immune responses in mice, respectively. The protective efficiency was measured preliminarily by microneutralization assay (MN50). The soluble S1-4 and S1-5 protein was prepared to high homogeneity and purity. Adjuvanted with Alum, S1-4 protein stimulated a strong antibody response in immunized mice and caused a major Th2-type cellular immunity supplemented with Th1-type immunity. Furthermore, the immunized sera could protect the Vero E6 cells from SARS-CoV-2 infection with neutralizing antibody titer 256. Recombinant SARS-CoV-2 RBD with a built in T helper epitope could stimulate both strong humoral immunity supplemented with cellular immunity in mice, demonstrating that it could be a promising subunit vaccine candidate.


Scavenger receptor B1 mediates phagocytosis and the antimicrobial peptide pathway in the endoparasitic wasp Micropilits mediator.

  • Li-Zhen Zhou‎ et al.
  • Developmental and comparative immunology‎
  • 2021‎

Scavenger receptors (SRs) are a family of pattern recognition receptors (PRRs) in the immune system. They are required for phagocytosis and act as co-receptors of Toll-like receptors to regulate immune signaling pathways in the fight against pathogens. Little is known about the function of SRs in insects. Here, we reported on a member of the SR family from the parasitic wasp Micropilits mediator (designated MmSR-B1) that is responsive to bacterial infection. The recombinant extracellular CD36 domain of MmSR-B1 produced in Escherichia coli cells is capable of binding to peptidoglycans and bacterial cells, causing agglutination of bacteria. Furthermore, we demonstrated that double-stranded RNA-mediated knockdown of MmSR-B1 impedes hemocyte phagocytosis and downregulates the expression of antimicrobial peptide (AMP) genes defensins and hymenoptaecins. Knockdown of MmSR-B1 led to increased death of the wasps when challenged by bacteria. Our study suggests that MmSR-B1 mediates phagocytosis and the production of AMPs in M. mediator wasps.


Tumor necrosis factor α-induced protein 1 as a novel tumor suppressor through selective downregulation of CSNK2B blocks nuclear factor-κB activation in hepatocellular carcinoma.

  • Ye Xiao‎ et al.
  • EBioMedicine‎
  • 2020‎

Tumor necrosis factor α-induced protein 1 (TNFAIP1) is frequently downregulated in cancer cell lines and promotes cancer cell apoptosis. However, its role, clinical significance and molecular mechanisms in hepatocellular carcinoma (HCC) are unknown.


Heterozygous Disruption of Beclin 1 Alleviates Zinc Oxide Nanoparticles-Induced Disturbance of Cholesterol Biosynthesis in Mouse Liver.

  • Xuemei Liu‎ et al.
  • International journal of nanomedicine‎
  • 2019‎

Liver is regarded as one of the primary target organs for zinc oxide nanoparticles (ZnONPs) toxicity. Since liver represents the leading site for de novo cholesterol biosynthesis in mammals, the injuries of liver could result in the disruption of cholesterol biosynthesis. In this study, we aimed to investigate whether pulmonary ZnONPs exposure induces disturbance of cholesterol biosynthesis in mouse liver.


Reactive oxygen species and antimicrobial peptides are sequentially produced in silkworm midgut in response to bacterial infection.

  • Rui-Juan Wang‎ et al.
  • Developmental and comparative immunology‎
  • 2020‎

The silkworm, Bombyx mori, is utilized as a research model in many aspects of biological studies, including genetics, development and immunology. Previous biochemical and genomic studies have elucidated the silkworm immunity in response to infections elicited by bacteria, fungi, microsporidia, and viruses. The intestine serves as the front line in the battle between insects and ingested harmful microorganisms. In this study, we performed RNA sequencing (RNA-seq) of the larval silkworm midgut after oral infection with the Gram-positive bacterium Bacillus bombysepticus and the Gram-negative bacterium Yersinia pseudotuberculosis. This enables us to get a comprehensive understanding of the midgut responses to bacterial infection. We found that B. bombysepticus induced much stronger immune responses than Y. pseudotuberculosis did. Bacterial infection resulted in more energy consumption including carbohydrates and fatty acids. The midgut immune system was characterized by the generation of reactive oxygen species and antimicrobial peptides. The former played a critical role in eliminating invading bacteria during early stage, while the latter executed during late stage. Our results provide an integrated insight into the midgut systematic responses to bacterial infection.


The NADPH oxidase 4 protects vascular endothelial cells from copper oxide nanoparticles-induced oxidative stress and cell death.

  • Hui He‎ et al.
  • Life sciences‎
  • 2020‎

Nanoparticles (NPs) exposure is associated with increased risk of cardiovascular diseases, but the underlying mechanism is still obscure. In this study, we investigated the role of NADPH oxidase 4 (NOX4) in copper oxide nanoparticles (CuONPs)-induced cytotoxicity in human umbilical vein endothelial cells (HUVECs).


A RhoGAP venom protein from Microplitis mediator suppresses the cellular response of its host Helicoverpa armigera.

  • Jie Du‎ et al.
  • Developmental and comparative immunology‎
  • 2020‎

Female parasitoid wasps normally inject virulence factors together with eggs into their host to counter host immunity defenses. A newly identified RhoGAP protein in the venom of Microplitis mediator compromises the cellular immunity of its host, Helicoverpa armigera. RhoGAP1 proteins entered H. armigera hemocytes, and the host cellular cytoskeleton was disrupted. Depletion of MmGAP1 by injection of dsRNA or antibody increased the wasp egg encapsulation rate. An immunoprecipitation assay of overexpressed MmGAP1 protein in a Helicoverpa cell line showed that MmGAP1 interacts with many cellular cytoskeleton associated proteins as well as Rho GTPases. A yeast two-hybrid and a pull-down assay demonstrated that MmGAP1 interacts with H. armigera RhoA and Cdc42. These results show that the RhoGAP protein in M. mediator can destroy the H. armigera hemocyte cellular cytoskeleton, restrain host cellular immune defense, and increase the probability of successful parasitism.


Bioactive Triterpenoid Saponins From the Seeds of Aesculus chinensis Bge. var. chekiangensis.

  • Nan Zhang‎ et al.
  • Frontiers in chemistry‎
  • 2019‎

Phytochemical investigation of Aesculus chinensis Bge. var. chekiangensis (Hu et Fang) Fang obtained 33 triterpenoid saponins, including 14 new ones, aesculiside C-P (1-14). The structure elucidations were performed through comprehensive MS, 1D and 2D-NMR analysis, and their absolute configuration was unambiguously determined by X-ray diffraction analysis as well as Mo2(OAc)4-induced ECD method for the first time. All the substances were examined for their cytotoxic activities against three tumor cell lines, Hep G2, HCT-116, and MGC-803. Of these, compounds 8, 9, 14-16, 18, and 22 exhibited potent cytotoxicities against all cell lines with IC50 of 2-21 μM, while compounds 3, 6, 7, 17-19, 20, 24, and 28 depicted moderate activity (IC50 13 to >40 μM). On these bases, the preliminary structure-activity correlations were also discussed. Meanwhile the neuroprotective properties of triterpenoid saponins from Aesculus genus were evaluated for the first time. Among them, compounds 1, 4, 12, 20, 22, 25, 29, and 31 exhibited moderate activities against COCl2-induced PC12 cell injury.


Six New Methyl Apiofuranosides from the Bark of Phellodendron chinense Schneid and Their Inhibitory Effects on Nitric Oxide Production.

  • Peng-Fei Wang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

A chemical investigation on 70% EtOH extract from the bark of Phellodendron chinense Schneid (Rutaceae) led to six new methyl apiofuranosides (1-6), and ten known compounds (7-16). All these compounds were characterized by the basic analysis of the spectroscopic data including extensive 1D-, 2D-NMR (HSQC, HMBC), and high-resolution mass spectrometry, and the absolute configurations were determined by both empirical approaches and NOESY. Inhibitory effects of compounds 1-9 and 11-16 on nitric oxide production were investigated in lipopolysaccharide (LPS)-mediated RAW 264.7 cells, as a result, most of these isolates inhibited nitric oxide (NO) release, and among them 9, 11, and 12 displayed the strongest inhibition on NO release at the concentration of 12.5 μM.


S5, a Withanolide Isolated from Physalis Pubescens L., Induces G2/M Cell Cycle Arrest via the EGFR/P38 Pathway in Human Melanoma A375 Cells.

  • Yuqi Fan‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

S5 is a withanolide natural product isolated from Physalis pubescens L. Our previous experimental studies found that it has significant antitumor activity on renal cell carcinoma. In the present study, the anti-melanoma effect of S5 and the related molecular mechanism was first investigated. It was found that S5 induced an obvious growth inhibitory effect on human melanoma A375 cells with low toxicity to human peripheral blood cells. Furthermore, the results demonstrated that the cell death mode of S5 on A375 cells is not due to inducing apoptosis and autophagy. However, there was a significant time-dependent increase in G2/M phase after treatment of A375 with S5. Meanwhile, S5 could also decrease the protein expression of Cdc25c, Cdc2, and CyclinB1, and increased the expression of p-P53 and P21, suggesting that S5 inhibited A375 cell death through G2/M phase arrest. Moreover, the signal pathway factors P38, extracellular regulated protein kinases (ERK), and epidermal growth factor receptor (EGFR) were observed taking part in the S5-induced A375 cells growth inhibitory effect. In addition, suppressing P38 and EGFR reversed the cell proliferation inhibitory effect and G2/M cell cycle arrest induced by S5 and inhibition of EGFR enhanced the downregulation of the expression of P38 and p-P38, indicating that S5 induced A375 G2/M arrest through the EGFR/P38 pathway. Briefly, this study explained for the first time the mechanism of S5-induced A375 cell growth inhibition in order to provide the basis for its clinical application in melanoma.


Complete genome analysis of hepatitis B virus in Qinghai-Tibet plateau: the geographical distribution, genetic diversity, and co-existence of HBsAg and anti-HBs antibodies.

  • He Liu‎ et al.
  • Virology journal‎
  • 2020‎

The genetic variation and origin of Hepatitis B Virus (HBV) in Qinghai-Tibet Plateau were poorly studied. The coexistence of HBsAg and anti-HBs has been described as a puzzle and has never been reported in the indigenous population or in recombinant HBV sequences. This study aimed to report geographical distribution, genetic variability and seroepidemiology of HBV in southwest China.


Copper Oxide Nanoparticles Induce Oxidative DNA Damage and Cell Death via Copper Ion-Mediated P38 MAPK Activation in Vascular Endothelial Cells.

  • Hui He‎ et al.
  • International journal of nanomedicine‎
  • 2020‎

Inhaled nanoparticles can cross pulmonary air-blood barrier into circulation and cause vascular endothelial injury and progression of cardiovascular disease. However, the molecular mechanism underlying the vascular toxicity of copper oxide nanoparticles (CuONPs) remains unclear. We have recently demonstrated that the release of copper ions and the accumulation of superoxide anions contributed to CuONPs-induced cell death in human umbilical vein endothelial cells (HUVECs). Herein, we further demonstrate the mechanism underlying copper ions-induced cell death in HUVECs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: