Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Global transcriptome analysis in influenza-infected mouse lungs reveals the kinetics of innate and adaptive host immune responses.

  • Claudia Pommerenke‎ et al.
  • PloS one‎
  • 2012‎

An infection represents a highly dynamic process involving complex biological responses of the host at many levels. To describe such processes at a global level, we recorded gene expression changes in mouse lungs after a non-lethal infection with influenza A virus over a period of 60 days. Global analysis of the large data set identified distinct phases of the host response. The increase in interferon genes and up-regulation of a defined NK-specific gene set revealed the initiation of the early innate immune response phase. Subsequently, infiltration and activation of T and B cells could be observed by an augmentation of T and B cell specific signature gene expression. The changes in B cell gene expression and preceding chemokine subsets were associated with the formation of bronchus-associated lymphoid tissue. In addition, we compared the gene expression profiles from wild type mice with Rag2 mutant mice. This analysis readily demonstrated that the deficiency in the T and B cell responses in Rag2 mutants could be detected by changes in the global gene expression patterns of the whole lung. In conclusion, our comprehensive gene expression study describes for the first time the entire host response and its kinetics to an acute influenza A infection at the transcriptome level.


Toxocara canis- and Toxocara cati-Induced Neurotoxocarosis Is Associated with Comprehensive Brain Transcriptomic Alterations.

  • Patrick Waindok‎ et al.
  • Microorganisms‎
  • 2022‎

Toxocara canis and Toxocara cati are globally occurring zoonotic roundworms of dogs and cats. Migration and persistence of Toxocara larvae in the central nervous system of paratenic hosts including humans may cause clinical signs of neurotoxocarosis (NT). As pathomechanisms of NT and host responses against Toxocara larvae are mostly unknown, whole-genome microarray transcription analysis was performed in cerebra and cerebella of experimentally infected C57Bl/6J mice as paratenic host model at days 14, 28, 70, 98, and 120 post-infection. Neuroinvasion of T. cati evoked 220 cerebral and 215 cerebellar differentially transcribed genes (DTGs), but no particular PANTHER (Protein ANalysis THrough Evolutionary Relationships) pathway was affected. In T. canis-infected mice, 1039 cerebral and 2073 cerebellar DTGs were identified. Statistically significant dysregulations occurred in various pathways, including cholesterol biosynthesis, apoptosis signaling, and the Slit/Robo mediated axon guidance as well as different pathways associated with the immune and defense response. Observed dysregulations of the cholesterol biosynthesis, as well as the Alzheimer disease-amyloid secretase pathway in conjunction with previous histopathological neurodegenerative findings, may promote the discussion of T. canis as a causative agent for dementia and/or Alzheimer's disease. Furthermore, results contribute to a deeper understanding of the largely unknown pathogenesis and host-parasite interactions during NT, and may provide the basis for prospective investigations evaluating pathogenic mechanisms or designing novel diagnostic and therapeutic approaches.


TLR8 regulation of LILRA3 in monocytes is abrogated in human immunodeficiency virus infection and correlates to CD4 counts and virus loads.

  • Hui Zhi Low‎ et al.
  • Retrovirology‎
  • 2016‎

LILRA3 is an immunostimulatory molecule which can conditionally induce the proliferation of cytotoxic cells. LILRA3 has a deletion genotype which is associated with multiple immune disorders. In this study, we wanted to analyze the regulation of LILRA3 and its significance in the context of HIV infection.


RNAseq expression analysis of resistant and susceptible mice after influenza A virus infection identifies novel genes associated with virus replication and important for host resistance to infection.

  • Esther Wilk‎ et al.
  • BMC genomics‎
  • 2015‎

The host response to influenza A infections is strongly influenced by host genetic factors. Animal models of genetically diverse mouse strains are well suited to identify host genes involved in severe pathology, viral replication and immune responses. Here, we have utilized a dual RNAseq approach that allowed us to investigate both viral and host gene expression in the same individual mouse after H1N1 infection.


Hematological parameters in the early phase of influenza A virus infection in differentially susceptible inbred mouse strains.

  • Matthias Preusse‎ et al.
  • BMC research notes‎
  • 2015‎

Hematological parameters have not received much attention in small animal models of infection, particularly at very early time points. We therefore studied changes in leukocyte and thrombocyte numbers in a mouse model of influenza A virus (IAV) infection, including measurements within the first 24 h after infection, and also assessing effects, if any, of the infection/anesthesia procedure on these parameters.


Multiplex profiling of inflammation-related bioactive lipid mediators in Toxocara canis- and Toxocara cati-induced neurotoxocarosis.

  • Patrick Waindok‎ et al.
  • PLoS neglected tropical diseases‎
  • 2019‎

Somatic migration of Toxocara canis- and T. cati-larvae in humans may cause neurotoxocarosis (NT) when larvae accumulate and persist in the central nervous system (CNS). Host- or parasite-induced immunoregulatory processes contribute to the pathogenesis; however, detailed data on involvement of bioactive lipid mediators, e.g. oxylipins or eico-/docosanoids, which are involved in the complex molecular signalling network during infection and inflammation, are lacking.


The interferon-induced gene Ifi27l2a is active in lung macrophages and lymphocytes after influenza A infection but deletion of Ifi27l2a in mice does not increase susceptibility to infection.

  • Mohamed A Tantawy‎ et al.
  • PloS one‎
  • 2014‎

Interferons represent one of the first and essential host defense mechanisms after infection, and the activation of the IFN-pathway results in the transcriptional activation of hundreds of interferon-stimulated genes. The alpha-inducible protein 27 like 2A (Ifi27l2a) gene (human synonym: ISG12) is strongly up-regulated in the lung after influenza A infection in mice and has been shown in gene expression studies to be highly correlated to other activated genes. Therefore, we investigated the role of Ifi27l2a for the host defense to influenza A infections in more detail. RT-PCR analyses in non-infected mice demonstrated that Ifi27l2a was expressed in several tissues, including the lung. Detailed analyses of reporter gene expression in lungs from Ifi27l2a-LacZ mice revealed that Ifi27l2a was expressed in macrophages and lymphocytes but not in alveolar cells or bronchiolar epithelium cells. The number of macrophages and lymphocyte strongly increased in the lung after infection, but no significant increase in expression levels of the LacZ reporter gene was found within individual immune cells. Also, no reporter gene expression was found in bronchiolar epithelial cells, alveolar cells or infiltrating neutrophils after infection. Thus, up-regulation of Ifi27l2a in infected lungs is mainly due to the infiltration of macrophages and lymphocytes. Most surprisingly, deletion of Ifi27l2a in mouse knock-out lines did not result in increased susceptibility to infections with H1N1 or H7N7 influenza A virus compared to wild type C57BL/6N mice, suggesting a less important role of the gene for the host response to influenza infections than for bacterial infections.


Cellular changes in blood indicate severe respiratory disease during influenza infections in mice.

  • Leonie Dengler‎ et al.
  • PloS one‎
  • 2014‎

Influenza A infection is a serious threat to human and animal health. Many of the biological mechanisms of the host-pathogen-interactions are still not well understood and reliable biomarkers indicating the course of the disease are missing. The mouse is a valuable model system enabling us to study the local inflammatory host response and the influence on blood parameters under controlled circumstances. Here, we compared the lung and peripheral changes after PR8 (H1N1) influenza A virus infection in C57BL/6J and DBA/2J mice using virus variants of different pathogenicity resulting in non-lethal and lethal disease. We monitored hematological and immunological parameters revealing that the granulocyte to lymphocyte ratio in the blood represents an early indicator of severe disease progression already two days after influenza A infection in mice. These findings might be relevant to optimize early diagnostic options of severe influenza disease and to monitor successful therapeutic treatment in humans.


Dynamic gene network reconstruction from gene expression data in mice after influenza A (H1N1) infection.

  • Konstantina Dimitrakopoulou‎ et al.
  • Journal of clinical bioinformatics‎
  • 2011‎

The immune response to viral infection is a temporal process, represented by a dynamic and complex network of gene and protein interactions. Here, we present a reverse engineering strategy aimed at capturing the temporal evolution of the underlying Gene Regulatory Networks (GRN). The proposed approach will be an enabling step towards comprehending the dynamic behavior of gene regulation circuitry and mapping the network structure transitions in response to pathogen stimuli.


Long-Term Neuroinflammation Induced by Influenza A Virus Infection and the Impact on Hippocampal Neuron Morphology and Function.

  • Shirin Hosseini‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2018‎

Acute influenza infection has been reported to be associated with neurological symptoms. However, the long-term consequences of an infection with neurotropic and non-neurotropic influenza A virus (IAV) variants for the CNS remain elusive. We can show that spine loss in the hippocampus after infection with neurotropic H7N7 (rSC35M) and non-neurotropic H3N2 (maHK68) in female C57BL/6 mice persists well beyond the acute phase of the disease. Although spine number was significantly reduced at 30 d postinfection (dpi) with H7N7 or H3N2, full recovery could only be observed much later at 120 dpi. Infection with H1N1 virus, which was shown previously to affect spine number and hippocampus-dependent learning acutely, had no significant long-term effects. Spine loss was associated with an increase in the number of activated microglia, reduced long-term potentiation in the hippocampus, and impairment in spatial memory formation, indicating that IAV-associated inflammation induced functional and structural alterations in hippocampal networks. Transcriptome analyses revealed regulation of many inflammatory and neuron- and glia-specific genes in H3N2- and H7N7-infected mice at day 18 and in H7N7-infected mice at day 30 pi that related to the structural and functional alterations. Our data provide evidence that neuroinflammation induced by neurotropic H7N7 and infection of the lung with a non-neurotropic H3N2 IAV result in long-term impairments in the CNS. IAV infection in humans may therefore not only lead to short-term responses in infected organs, but may also trigger neuroinflammation and associated chronic alterations in the CNS.SIGNIFICANCE STATEMENT In the acute phase of influenza infection, neuroinflammation can lead to alterations in hippocampal neuronal morphology and cognitive deficits. The results of this study now also provide evidence that neuroinflammation induced by influenza A virus (IAV) infection can induce longer-lasting, virus-specific alterations in neuronal connectivity that are still detectable 1 month after infection and are associated with impairments in spatial memory formation. IAV infection in humans may therefore not only lead to short-term responses in infected organs, but may also trigger neuroinflammation and associated chronic alterations in the CNS.


Systems genetics of influenza A virus-infected mice identifies TRIM21 as a critical regulator of pulmonary innate immune response.

  • Zhuoyuan Alex Li‎ et al.
  • Virus research‎
  • 2024‎

Tripartite motif 21 (TRIM21) is a cytosolic Fc receptor that targets antibody-bound, internalized pathogens for destruction. Apart from this intrinsic defense role, TRIM21 is implicated in autoimmune diseases, inflammation, and autophagy. Whether TRIM21 participates in host interactions with influenza A virus (IAV), however, is unknown. By computational modeling of body weight and lung transcriptome data from the BXD parents (C57BL/6 J (B6) and DBA/2 J (D2)) and 41 BXD mouse strains challenged by IAV, we reveal that a Trim21-associated gene network modulates the early host responses to IAV infection. Trim21 transcripts were significantly upregulated in infected mice of both B6 and D2 backgrounds. Its expression was significantly higher in infected D2 than in infected B6 early after infection and significantly correlated with body weight loss. We identified significant trans-eQTL on chromosome 14 that regulates Trim21 expression. Nr1d2 and Il3ra were among the strongest candidate genes. Pathway analysis found Trim21 to be involved in inflammation and immunity related pathways, such as inflammation signaling pathways (TNF, IL-17, and NF-κB), viral detection signaling pathways (NOD-like and RIG-I-like), influenza, and other respiratory viral infections. Knockdown of TRIM21 in human lung epithelial A549 cells significantly augmented IAV-induced expression of IFNB1, IFNL1, CCL5, CXCL10, and IFN-stimulated genes including DDX58 and IFIH1, among others. Our data suggest that a TRIM21-associated gene network is involved in several aspects of inflammation and viral detection mechanisms during IAV infection. We identify and validate TRIM21 as a critical regulator of innate immune responses to IAV in human lung epithelial cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: