Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Integrated DNA/RNA targeted genomic profiling of diffuse large B-cell lymphoma using a clinical assay.

  • Andrew M Intlekofer‎ et al.
  • Blood cancer journal‎
  • 2018‎

We sought to define the genomic landscape of diffuse large B-cell lymphoma (DLBCL) by using formalin-fixed paraffin-embedded (FFPE) biopsy specimens. We used targeted sequencing of genes altered in hematologic malignancies, including DNA coding sequence for 405 genes, noncoding sequence for 31 genes, and RNA coding sequence for 265 genes (FoundationOne-Heme). Short variants, rearrangements, and copy number alterations were determined. We studied 198 samples (114 de novo, 58 previously treated, and 26 large-cell transformation from follicular lymphoma). Median number of GAs per case was 6, with 97% of patients harboring at least one alteration. Recurrent GAs were detected in genes with established roles in DLBCL pathogenesis (e.g. MYD88, CREBBP, CD79B, EZH2), as well as notable differences compared to prior studies such as inactivating mutations in TET2 (5%). Less common GAs identified potential targets for approved or investigational therapies, including BRAF, CD274 (PD-L1), IDH2, and JAK1/2. TP53 mutations were more frequently observed in relapsed/refractory DLBCL, and predicted for lack of response to first-line chemotherapy, identifying a subset of patients that could be prioritized for novel therapies. Overall, 90% (n = 169) of the patients harbored a GA which could be explored for therapeutic intervention, with 54% (n = 107) harboring more than one putative target.


Comprehensive detection of recurring genomic abnormalities: a targeted sequencing approach for multiple myeloma.

  • Venkata Yellapantula‎ et al.
  • Blood cancer journal‎
  • 2019‎

Recent genomic research efforts in multiple myeloma have revealed clinically relevant molecular subgroups beyond conventional cytogenetic classifications. Implementing these advances in clinical trial design and in routine patient care requires a new generation of molecular diagnostic tools. Here, we present a custom capture next-generation sequencing (NGS) panel designed to identify rearrangements involving the IGH locus, arm level, and focal copy number aberrations, as well as frequently mutated genes in multiple myeloma in a single assay. We sequenced 154 patients with plasma cell disorders and performed a head-to-head comparison with the results from conventional clinical assays, i.e., fluorescent in situ hybridization (FISH) and single-nucleotide polymorphism (SNP) microarray. Our custom capture NGS panel had high sensitivity (>99%) and specificity (>99%) for detection of IGH translocations and relevant chromosomal gains and losses in multiple myeloma. In addition, the assay was able to capture novel genomic markers associated with poor outcome such as bi-allelic events involving TP53. In summary, we show that a multiple myeloma designed custom capture NGS panel can detect IGH translocations and CNAs with very high concordance in relation to FISH and SNP microarrays and importantly captures the most relevant and recurrent somatic mutations in multiple myeloma rendering this approach highly suitable for clinical application in the modern era.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: