Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 128 papers

Landscape of somatic mutations in 560 breast cancer whole-genome sequences.

  • Serena Nik-Zainal‎ et al.
  • Nature‎
  • 2016‎

We analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, another with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.


Mutational signatures of ionizing radiation in second malignancies.

  • Sam Behjati‎ et al.
  • Nature communications‎
  • 2016‎

Ionizing radiation is a potent carcinogen, inducing cancer through DNA damage. The signatures of mutations arising in human tissues following in vivo exposure to ionizing radiation have not been documented. Here, we searched for signatures of ionizing radiation in 12 radiation-associated second malignancies of different tumour types. Two signatures of somatic mutation characterize ionizing radiation exposure irrespective of tumour type. Compared with 319 radiation-naive tumours, radiation-associated tumours carry a median extra 201 deletions genome-wide, sized 1-100 base pairs often with microhomology at the junction. Unlike deletions of radiation-naive tumours, these show no variation in density across the genome or correlation with sequence context, replication timing or chromatin structure. Furthermore, we observe a significant increase in balanced inversions in radiation-associated tumours. Both small deletions and inversions generate driver mutations. Thus, ionizing radiation generates distinctive mutational signatures that explain its carcinogenic potential.


Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia.

  • Srividya Swaminathan‎ et al.
  • Nature immunology‎
  • 2015‎

Childhood acute lymphoblastic leukemia (ALL) can often be traced to a pre-leukemic clone carrying a prenatal genetic lesion. Postnatally acquired mutations then drive clonal evolution toward overt leukemia. The enzymes RAG1-RAG2 and AID, which diversify immunoglobulin-encoding genes, are strictly segregated in developing cells during B lymphopoiesis and peripheral mature B cells, respectively. Here we identified small pre-BII cells as a natural subset with increased genetic vulnerability owing to concurrent activation of these enzymes. Consistent with epidemiological findings on childhood ALL etiology, susceptibility to genetic lesions during B lymphopoiesis at the transition from the large pre-BII cell stage to the small pre-BII cell stage was exacerbated by abnormal cytokine signaling and repetitive inflammatory stimuli. We demonstrated that AID and RAG1-RAG2 drove leukemic clonal evolution with repeated exposure to inflammatory stimuli, paralleling chronic infections in childhood.


Baseline identification of clonal V(D)J sequences for DNA-based minimal residual disease detection in multiple myeloma.

  • Even H Rustad‎ et al.
  • PloS one‎
  • 2019‎

Tracking of clonal immunoglobulin V(D)J rearrangement sequences by next generation sequencing is highly sensitive for minimal residual disease in multiple myeloma. However, previous studies have found variable rates of V(D)J sequence identification at baseline, which could limit tracking. Here, we aimed to define the factors influencing the identification of clonal V(D)J sequences. Bone marrow mononuclear cells from 177 myeloma patients underwent V(D)J sequencing by the LymphoTrack assays (Invivoscribe). As a molecular control for tumor cell content, we sequenced the samples using our in-house myeloma panel myTYPE. V(D)J sequence clonality was identified in 81% of samples overall, as compared with 95% in samples where tumor-derived DNA was detectable by myTYPE. Clonality was detected more frequently in patients with lambda-restricted disease, mainly because of increased detection of kappa gene rearrangements. Finally, we describe how the tumor cell content of bone marrow aspirates decrease gradually in sequential pulls because of hemodilution: From the initial pull used for aspirate smear, to the final pull that is commonly used for research. In conclusion, baseline clonality detection rates of 95% or higher are feasible in multiple myeloma. Optimal performance depends on the use of good quality aspirates and/or subsequent tumor cell enrichment.


Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations.

  • Andrew M Intlekofer‎ et al.
  • Nature‎
  • 2018‎

Somatic mutations in the isocitrate dehydrogenase 2 gene (IDH2) contribute to the pathogenesis of acute myeloid leukaemia (AML) through the production of the oncometabolite 2-hydroxyglutarate (2HG)1-8. Enasidenib (AG-221) is an allosteric inhibitor that binds to the IDH2 dimer interface and blocks the production of 2HG by IDH2 mutants9,10. In a phase I/II clinical trial, enasidenib inhibited the production of 2HG and induced clinical responses in relapsed or refractory IDH2-mutant AML11. Here we describe two patients with IDH2-mutant AML who had a clinical response to enasidenib followed by clinical resistance, disease progression, and a recurrent increase in circulating levels of 2HG. We show that therapeutic resistance is associated with the emergence of second-site IDH2 mutations in trans, such that the resistance mutations occurred in the IDH2 allele without the neomorphic R140Q mutation. The in trans mutations occurred at glutamine 316 (Q316E) and isoleucine 319 (I319M), which are at the interface where enasidenib binds to the IDH2 dimer. The expression of either of these mutant disease alleles alone did not induce the production of 2HG; however, the expression of the Q316E or I319M mutation together with the R140Q mutation in trans allowed 2HG production that was resistant to inhibition by enasidenib. Biochemical studies predicted that resistance to allosteric IDH inhibitors could also occur via IDH dimer-interface mutations in cis, which was confirmed in a patient with acquired resistance to the IDH1 inhibitor ivosidenib (AG-120). Our observations uncover a mechanism of acquired resistance to a targeted therapy and underscore the importance of 2HG production in the pathogenesis of IDH-mutant malignancies.


C. elegans whole-genome sequencing reveals mutational signatures related to carcinogens and DNA repair deficiency.

  • Bettina Meier‎ et al.
  • Genome research‎
  • 2014‎

Mutation is associated with developmental and hereditary disorders, aging, and cancer. While we understand some mutational processes operative in human disease, most remain mysterious. We used Caenorhabditis elegans whole-genome sequencing to model mutational signatures, analyzing 183 worm populations across 17 DNA repair-deficient backgrounds propagated for 20 generations or exposed to carcinogens. The baseline mutation rate in C. elegans was approximately one per genome per generation, not overtly altered across several DNA repair deficiencies over 20 generations. Telomere erosion led to complex chromosomal rearrangements initiated by breakage-fusion-bridge cycles and completed by simultaneously acquired, localized clusters of breakpoints. Aflatoxin B1 induced substitutions of guanines in a GpC context, as observed in aflatoxin-induced liver cancers. Mutational burden increased with impaired nucleotide excision repair. Cisplatin and mechlorethamine, DNA crosslinking agents, caused dose- and genotype-dependent signatures among indels, substitutions, and rearrangements. Strikingly, both agents induced clustered rearrangements resembling "chromoanasynthesis," a replication-based mutational signature seen in constitutional genomic disorders, suggesting that interstrand crosslinks may play a pathogenic role in such events. Cisplatin mutagenicity was most pronounced in xpf-1 mutants, suggesting that this gene critically protects cells against platinum chemotherapy. Thus, experimental model systems combined with genome sequencing can recapture and mechanistically explain mutational signatures associated with human disease.


Myelodysplastic syndromes are propagated by rare and distinct human cancer stem cells in vivo.

  • Petter S Woll‎ et al.
  • Cancer cell‎
  • 2014‎

Evidence for distinct human cancer stem cells (CSCs) remains contentious and the degree to which different cancer cells contribute to propagating malignancies in patients remains unexplored. In low- to intermediate-risk myelodysplastic syndromes (MDS), we establish the existence of rare multipotent MDS stem cells (MDS-SCs), and their hierarchical relationship to lineage-restricted MDS progenitors. All identified somatically acquired genetic lesions were backtracked to distinct MDS-SCs, establishing their distinct MDS-propagating function in vivo. In isolated del(5q)-MDS, acquisition of del(5q) preceded diverse recurrent driver mutations. Sequential analysis in del(5q)-MDS revealed genetic evolution in MDS-SCs and MDS-progenitors prior to leukemic transformation. These findings provide definitive evidence for rare human MDS-SCs in vivo, with extensive implications for the targeting of the cells required and sufficient for MDS-propagation.


Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma.

  • Sam Behjati‎ et al.
  • Nature communications‎
  • 2017‎

Osteosarcoma is a primary malignancy of bone that affects children and adults. Here, we present the largest sequencing study of osteosarcoma to date, comprising 112 childhood and adult tumours encompassing all major histological subtypes. A key finding of our study is the identification of mutations in insulin-like growth factor (IGF) signalling genes in 8/112 (7%) of cases. We validate this observation using fluorescence in situ hybridization (FISH) in an additional 87 osteosarcomas, with IGF1 receptor (IGF1R) amplification observed in 14% of tumours. These findings may inform patient selection in future trials of IGF1R inhibitors in osteosarcoma. Analysing patterns of mutation, we identify distinct rearrangement profiles including a process characterized by chromothripsis and amplification. This process operates recurrently at discrete genomic regions and generates driver mutations. It may represent an age-independent mutational mechanism that contributes to the development of osteosarcoma in children and adults alike.


Identification of nine new susceptibility loci for testicular cancer, including variants near DAZL and PRDM14.

  • Elise Ruark‎ et al.
  • Nature genetics‎
  • 2013‎

Testicular germ cell tumor (TGCT) is the most common cancer in young men and is notable for its high familial risks. So far, six loci associated with TGCT have been reported. From genome-wide association study (GWAS) analysis of 307,291 SNPs in 986 TGCT cases and 4,946 controls, we selected for follow-up 694 SNPs, which we genotyped in a further 1,064 TGCT cases and 10,082 controls from the UK. We identified SNPs at nine new loci (1q22, 1q24.1, 3p24.3, 4q24, 5q31.1, 8q13.3, 16q12.1, 17q22 and 21q22.3) showing association with TGCT (P < 5 × 10(-8)), which together account for an additional 4-6% of the familial risk of TGCT. The loci include genes plausibly related to TGCT development. PRDM14, at 8q13.3, is essential for early germ cell specification, and DAZL, at 3p24.3, is required for the regulation of germ cell development. Furthermore, PITX1, at 5q31.1, regulates TERT expression and is the third TGCT-associated locus implicated in telomerase regulation.


Massive genomic rearrangement acquired in a single catastrophic event during cancer development.

  • Philip J Stephens‎ et al.
  • Cell‎
  • 2011‎

Cancer is driven by somatically acquired point mutations and chromosomal rearrangements, conventionally thought to accumulate gradually over time. Using next-generation sequencing, we characterize a phenomenon, which we term chromothripsis, whereby tens to hundreds of genomic rearrangements occur in a one-off cellular crisis. Rearrangements involving one or a few chromosomes crisscross back and forth across involved regions, generating frequent oscillations between two copy number states. These genomic hallmarks are highly improbable if rearrangements accumulate over time and instead imply that nearly all occur during a single cellular catastrophe. The stamp of chromothripsis can be seen in at least 2%-3% of all cancers, across many subtypes, and is present in ∼25% of bone cancers. We find that one, or indeed more than one, cancer-causing lesion can emerge out of the genomic crisis. This phenomenon has important implications for the origins of genomic remodeling and temporal emergence of cancer.


Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma.

  • Ignacio Varela‎ et al.
  • Nature‎
  • 2011‎

The genetics of renal cancer is dominated by inactivation of the VHL tumour suppressor gene in clear cell carcinoma (ccRCC), the commonest histological subtype. A recent large-scale screen of ∼3,500 genes by PCR-based exon re-sequencing identified several new cancer genes in ccRCC including UTX (also known as KDM6A), JARID1C (also known as KDM5C) and SETD2 (ref. 2). These genes encode enzymes that demethylate (UTX, JARID1C) or methylate (SETD2) key lysine residues of histone H3. Modification of the methylation state of these lysine residues of histone H3 regulates chromatin structure and is implicated in transcriptional control. However, together these mutations are present in fewer than 15% of ccRCC, suggesting the existence of additional, currently unidentified cancer genes. Here, we have sequenced the protein coding exome in a series of primary ccRCC and report the identification of the SWI/SNF chromatin remodelling complex gene PBRM1 (ref. 4) as a second major ccRCC cancer gene, with truncating mutations in 41% (92/227) of cases. These data further elucidate the somatic genetic architecture of ccRCC and emphasize the marked contribution of aberrant chromatin biology.


DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis.

  • Benjamin Jm Taylor‎ et al.
  • eLife‎
  • 2013‎

Breast cancer genomes have revealed a novel form of mutation showers (kataegis) in which multiple same-strand substitutions at C:G pairs spaced one to several hundred nucleotides apart are clustered over kilobase-sized regions, often associated with sites of DNA rearrangement. We show kataegis can result from AID/APOBEC-catalysed cytidine deamination in the vicinity of DNA breaks, likely through action on single-stranded DNA exposed during resection. Cancer-like kataegis can be recapitulated by expression of AID/APOBEC family deaminases in yeast where it largely depends on uracil excision, which generates an abasic site for strand breakage. Localized kataegis can also be nucleated by an I-SceI-induced break. Genome-wide patterns of APOBEC3-catalyzed deamination in yeast reveal APOBEC3B and 3A as the deaminases whose mutational signatures are most similar to those of breast cancer kataegic mutations. Together with expression and functional assays, the results implicate APOBEC3B/A in breast cancer hypermutation and give insight into the mechanism of kataegis. DOI:http://dx.doi.org/10.7554/eLife.00534.001.


Deciphering signatures of mutational processes operative in human cancer.

  • Ludmil B Alexandrov‎ et al.
  • Cell reports‎
  • 2013‎

The genome of a cancer cell carries somatic mutations that are the cumulative consequences of the DNA damage and repair processes operative during the cellular lineage between the fertilized egg and the cancer cell. Remarkably, these mutational processes are poorly characterized. Global sequencing initiatives are yielding catalogs of somatic mutations from thousands of cancers, thus providing the unique opportunity to decipher the signatures of mutational processes operative in human cancer. However, until now there have been no theoretical models describing the signatures of mutational processes operative in cancer genomes and no systematic computational approaches are available to decipher these mutational signatures. Here, by modeling mutational processes as a blind source separation problem, we introduce a computational framework that effectively addresses these questions. Our approach provides a basis for characterizing mutational signatures from cancer-derived somatic mutational catalogs, paving the way to insights into the pathogenetic mechanism underlying all cancers.


Mutations in the DLG3 gene cause nonsyndromic X-linked mental retardation.

  • Patrick Tarpey‎ et al.
  • American journal of human genetics‎
  • 2004‎

We have identified truncating mutations in the human DLG3 (neuroendocrine dlg) gene in 4 of 329 families with moderate to severe X-linked mental retardation. DLG3 encodes synapse-associated protein 102 (SAP102), a member of the membrane-associated guanylate kinase protein family. Neuronal SAP102 is expressed during early brain development and is localized to the postsynaptic density of excitatory synapses. It is composed of three amino-terminal PDZ domains, an src homology domain, and a carboxyl-terminal guanylate kinase domain. The PDZ domains interact directly with the NR2 subunits of the NMDA glutamate receptor and with other proteins responsible for NMDA receptor localization, immobilization, and signaling. The mutations identified in this study all introduce premature stop codons within or before the third PDZ domain, and it is likely that this impairs the ability of SAP102 to interact with the NMDA receptor and/or other proteins involved in downstream NMDA receptor signaling pathways. NMDA receptors have been implicated in the induction of certain forms of synaptic plasticity, such as long-term potentiation and long-term depression, and these changes in synaptic efficacy have been proposed as neural mechanisms underlying memory and learning. The disruption of NMDA receptor targeting or signaling, as a result of the loss of SAP102, may lead to altered synaptic plasticity and may explain the intellectual impairment observed in individuals with DLG3 mutations.


Whole genome DNA copy number changes identified by high density oligonucleotide arrays.

  • Jing Huang‎ et al.
  • Human genomics‎
  • 2004‎

Changes in DNA copy number are one of the hallmarks of the genetic instability common to most human cancers. Previous microarray-based methods have been used to identify chromosomal gains and losses; however, they are unable to genotype alleles at the level of single nucleotide polymorphisms (SNPs). Here we describe a novel algorithm that uses a recently developed high-density oligonucleotide array-based SNP genotyping method, whole genome sampling analysis (WGSA), to identify genome-wide chromosomal gains and losses at high resolution. WGSA simultaneously genotypes over 10,000 SNPs by allele-specific hybridisation to perfect match (PM) and mismatch (MM) probes synthesised on a single array. The copy number algorithm jointly uses PM intensity and discrimination ratios between paired PM and MM intensity values to identify and estimate genetic copy number changes. Values from an experimental sample are compared with SNP-specific distributions derived from a reference set containing over 100 normal individuals to gain statistical power. Genomic regions with statistically significant copy number changes can be identified using both single point analysis and contiguous point analysis of SNP intensities. We identified multiple regions of amplification and deletion using a panel of human breast cancer cell lines. We verified these results using an independent method based on quantitative polymerase chain reaction and found that our approach is both sensitive and specific and can tolerate samples which contain a mixture of both tumour and normal DNA. In addition, by using known allele frequencies from the reference set, statistically significant genomic intervals can be identified containing contiguous stretches of homozygous markers, potentially allowing the detection of regions undergoing loss of heterozygosity (LOH) without the need for a matched normal control sample. The coupling of LOH analysis, via SNP genotyping, with copy number estimations using a single array provides additional insight into the structure of genomic alterations. With mean and median inter-SNP euchromatin distances of 244 kilobases (kb) and 119 kb, respectively, this method affords a resolution that is not easily achievable with non-oligonucleotide-based experimental approaches.


Imidazopurinones are markers of physiological genomic damage linked to DNA instability and glyoxalase 1-associated tumour multidrug resistance.

  • Paul J Thornalley‎ et al.
  • Nucleic acids research‎
  • 2010‎

Glyoxal and methylglyoxal are reactive dicarbonyl metabolites formed and metabolized in physiological systems. Increased exposure to these dicarbonyls is linked to mutagenesis and cytotoxicity and enhanced dicarbonyl metabolism by overexpression of glyoxalase 1 is linked to tumour multidrug resistance in cancer chemotherapy. We report herein that glycation of DNA by glyoxal and methylglyoxal produces a quantitatively important class of nucleotide adduct in physiological systems-imidazopurinones. The adduct derived from methylglyoxal-3-(2'-deoxyribosyl)-6,7-dihydro-6,7-dihydroxy-6/7-methylimidazo-[2,3-b]purine-9(8)one isomers-was the major quantitative adduct detected in mononuclear leukocytes in vivo and tumour cell lines in vitro. It was linked to frequency of DNA strand breaks and increased markedly during apoptosis induced by a cell permeable glyoxalase 1 inhibitor. Unexpectedly, the DNA content of methylglyoxal-derived imidazopurinone and oxidative marker 7,8-dihydro-8-oxo-2'-deoxyguanosine were increased moderately in glyoxalase 1-linked multidrug resistant tumour cell lines. Together these findings suggest that imidazopurinones are a major type of endogenous DNA damage and glyoxalase 1 overexpression in tumour cells strives to counter increased imidazopurinone formation in tumour cells likely linked to their high glycolytic activity.


Mutations in the gene encoding the Sigma 2 subunit of the adaptor protein 1 complex, AP1S2, cause X-linked mental retardation.

  • Patrick S Tarpey‎ et al.
  • American journal of human genetics‎
  • 2006‎

In a systematic sequencing screen of the coding exons of the X chromosome in 250 families with X-linked mental retardation (XLMR), we identified two nonsense mutations and one consensus splice-site mutation in the AP1S2 gene on Xp22 in three families. Affected individuals in these families showed mild-to-profound mental retardation. Other features included hypotonia early in life and delay in walking. AP1S2 encodes an adaptin protein that constitutes part of the adaptor protein complex found at the cytoplasmic face of coated vesicles located at the Golgi complex. The complex mediates the recruitment of clathrin to the vesicle membrane. Aberrant endocytic processing through disruption of adaptor protein complexes is likely to result from the AP1S2 mutations identified in the three XLMR-affected families, and such defects may plausibly cause abnormal synaptic development and function. AP1S2 is the first reported XLMR gene that encodes a protein directly involved in the assembly of endocytic vesicles.


Somatic Evolution in Non-neoplastic IBD-Affected Colon.

  • Sigurgeir Olafsson‎ et al.
  • Cell‎
  • 2020‎

Inflammatory bowel disease (IBD) is a chronic inflammatory disease associated with increased risk of gastrointestinal cancers. We whole-genome sequenced 446 colonic crypts from 46 IBD patients and compared these to 412 crypts from 41 non-IBD controls from our previous publication on the mutation landscape of the normal colon. The average mutation rate of affected colonic epithelial cells is 2.4-fold that of healthy colon, and this increase is mostly driven by acceleration of mutational processes ubiquitously observed in normal colon. In contrast to the normal colon, where clonal expansions outside the confines of the crypt are rare, we observed widespread millimeter-scale clonal expansions. We discovered non-synonymous mutations in ARID1A, FBXW7, PIGR, ZC3H12A, and genes in the interleukin 17 and Toll-like receptor pathways, under positive selection in IBD. These results suggest distinct selection mechanisms in the colitis-affected colon and that somatic mutations potentially play a causal role in IBD pathogenesis.


Epigenetic therapy of myelodysplastic syndromes connects to cellular differentiation independently of endogenous retroelement derepression.

  • Anastasiya Kazachenka‎ et al.
  • Genome medicine‎
  • 2019‎

Myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML) are characterised by abnormal epigenetic repression and differentiation of bone marrow haematopoietic stem cells (HSCs). Drugs that reverse epigenetic repression, such as 5-azacytidine (5-AZA), induce haematological improvement in half of treated patients. Although the mechanisms underlying therapy success are not yet clear, induction of endogenous retroelements (EREs) has been hypothesised.


Increased somatic mutation burdens in normal human cells due to defective DNA polymerases.

  • Philip S Robinson‎ et al.
  • Nature genetics‎
  • 2021‎

Mutation accumulation in somatic cells contributes to cancer development and is proposed as a cause of aging. DNA polymerases Pol ε and Pol δ replicate DNA during cell division. However, in some cancers, defective proofreading due to acquired POLE/POLD1 exonuclease domain mutations causes markedly elevated somatic mutation burdens with distinctive mutational signatures. Germline POLE/POLD1 mutations cause familial cancer predisposition. Here, we sequenced normal tissue and tumor DNA from individuals with germline POLE/POLD1 mutations. Increased mutation burdens with characteristic mutational signatures were found in normal adult somatic cell types, during early embryogenesis and in sperm. Thus human physiology can tolerate ubiquitously elevated mutation burdens. Except for increased cancer risk, individuals with germline POLE/POLD1 mutations do not exhibit overt features of premature aging. These results do not support a model in which all features of aging are attributable to widespread cell malfunction directly resulting from somatic mutation burdens accrued during life.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: