Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

Case report of a child bearing a novel deleterious splicing variant in PIGT.

  • Samantha Mason‎ et al.
  • Medicine‎
  • 2019‎

Trio family-based whole exome sequencing (WES) is a powerful tool in the diagnosis of rare neurodevelopmental diseases, even in patients with the unclear diagnosis. There have been previous reports of variants in the phosphatidylinositol glycan anchor biosynthesis class T (PIGT) gene associated with multiple congenital anomalies, with a total of 14 affected individuals across 8 families.


A Recurrent De Novo Nonsense Variant in ZSWIM6 Results in Severe Intellectual Disability without Frontonasal or Limb Malformations.

  • Elizabeth E Palmer‎ et al.
  • American journal of human genetics‎
  • 2017‎

A recurrent de novo missense variant within the C-terminal Sin3-like domain of ZSWIM6 was previously reported to cause acromelic frontonasal dysostosis (AFND), an autosomal-dominant severe frontonasal and limb malformation syndrome, associated with neurocognitive and motor delay, via a proposed gain-of-function effect. We present detailed phenotypic information on seven unrelated individuals with a recurrent de novo nonsense variant (c.2737C>T [p.Arg913Ter]) in the penultimate exon of ZSWIM6 who have severe-profound intellectual disability and additional central and peripheral nervous system symptoms but an absence of frontonasal or limb malformations. We show that the c.2737C>T variant does not trigger nonsense-mediated decay of the ZSWIM6 mRNA in affected individual-derived cells. This finding supports the existence of a truncated ZSWIM6 protein lacking the Sin3-like domain, which could have a dominant-negative effect. This study builds support for a key role for ZSWIM6 in neuronal development and function, in addition to its putative roles in limb and craniofacial development, and provides a striking example of different variants in the same gene leading to distinct phenotypes.


Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders.

  • Tianyun Wang‎ et al.
  • Nature communications‎
  • 2020‎

Most genes associated with neurodevelopmental disorders (NDDs) were identified with an excess of de novo mutations (DNMs) but the significance in case-control mutation burden analysis is unestablished. Here, we sequence 63 genes in 16,294 NDD cases and an additional 62 genes in 6,211 NDD cases. By combining these with published data, we assess a total of 125 genes in over 16,000 NDD cases and compare the mutation burden to nonpsychiatric controls from ExAC. We identify 48 genes (25 newly reported) showing significant burden of ultra-rare (MAF < 0.01%) gene-disruptive mutations (FDR 5%), six of which reach family-wise error rate (FWER) significance (p < 1.25E-06). Among these 125 targeted genes, we also reevaluate DNM excess in 17,426 NDD trios with 6,499 new autism trios. We identify 90 genes enriched for DNMs (FDR 5%; e.g., GABRG2 and UIMC1); of which, 61 reach FWER significance (p < 3.64E-07; e.g., CASZ1). In addition to doubling the number of patients for many NDD risk genes, we present phenotype-genotype correlations for seven risk genes (CTCF, HNRNPU, KCNQ3, ZBTB18, TCF12, SPEN, and LEO1) based on this large-scale targeted sequencing effort.


Significantly Elevated FMR1 mRNA and Mosaicism for Methylated Premutation and Full Mutation Alleles in Two Brothers with Autism Features Referred for Fragile X Testing.

  • Michael Field‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Although fragile X syndrome (FXS) is caused by a hypermethylated full mutation (FM) expansion with ≥200 cytosine-guanine-guanine (CGG) repeats, and a decrease in FMR1 mRNA and its protein (FMRP), incomplete silencing has been associated with more severe autism features in FXS males. This study reports on brothers (B1 and B2), aged 5 and 2 years, with autistic features and language delay, but a higher non-verbal IQ in comparison to typical FXS. CGG sizing using AmplideX PCR only identified premutation (PM: 55-199 CGGs) alleles in blood. Similarly, follow-up in B1 only revealed PM alleles in saliva and skin fibroblasts; whereas, an FM expansion was detected in both saliva and buccal DNA of B2. While Southern blot analysis of blood detected an unmethylated FM, methylation analysis with a more sensitive methodology showed that B1 had partially methylated PM alleles in blood and fibroblasts, which were completely unmethylated in buccal and saliva cells. In contrast, B2 was partially methylated in all tested tissues. Moreover, both brothers had FMR1 mRNA ~5 fold higher values than those of controls, FXS and PM cohorts. In conclusion, the presence of unmethylated FM and/or PM in both brothers may lead to an overexpression of toxic expanded mRNA in some cells, which may contribute to neurodevelopmental problems, including elevated autism features.


Neonatal-lethal dilated cardiomyopathy due to a homozygous LMOD2 donor splice-site variant.

  • Michaela Yuen‎ et al.
  • European journal of human genetics : EJHG‎
  • 2022‎

Dilated cardiomyopathy (DCM) is characterized by cardiac enlargement and impaired ventricular contractility leading to heart failure. A single report identified variants in leiomodin-2 (LMOD2) as a cause of neonatally-lethal DCM. Here, we describe two siblings with DCM who died shortly after birth due to heart failure. Exome sequencing identified a homozygous LMOD2 variant in both siblings, (GRCh38)chr7:g.123656237G > A; NM_207163.2:c.273 + 1G > A, ablating the donor 5' splice-site of intron-1. Pre-mRNA splicing studies and western blot analysis on cDNA derived from proband cardiac tissue, MyoD-transduced proband skin fibroblasts and HEK293 cells transfected with LMOD2 gene constructs established variant-associated absence of canonically spliced LMOD2 mRNA and full-length LMOD2 protein. Immunostaining of proband heart tissue unveiled abnormally short actin-thin filaments. Our data are consistent with LMOD2 c.273 + 1G > A abolishing/reducing LMOD2 transcript expression by: (1) variant-associated perturbation in initiation of transcription due to ablation of the intron-1 donor; and/or (2) degradation of aberrant LMOD2 transcripts (resulting from use of alternative transcription start-sites or cryptic splice-sites) by nonsense-mediated decay. LMOD2 expression is critical for life and the absence of LMOD2 is associated with thin filament shortening and severe cardiac contractile dysfunction. This study describes the first splice-site variant in LMOD2 and confirms the role of LMOD2 variants in DCM.


Functional and clinical studies reveal pathophysiological complexity of CLCN4-related neurodevelopmental condition.

  • Elizabeth E Palmer‎ et al.
  • Molecular psychiatry‎
  • 2023‎

Missense and truncating variants in the X-chromosome-linked CLCN4 gene, resulting in reduced or complete loss-of-function (LOF) of the encoded chloride/proton exchanger ClC-4, were recently demonstrated to cause a neurocognitive phenotype in both males and females. Through international clinical matchmaking and interrogation of public variant databases we assembled a database of 90 rare CLCN4 missense variants in 90 families: 41 unique and 18 recurrent variants in 49 families. For 43 families, including 22 males and 33 females, we collated detailed clinical and segregation data. To confirm causality of variants and to obtain insight into disease mechanisms, we investigated the effect on electrophysiological properties of 59 of the variants in Xenopus oocytes using extended voltage and pH ranges. Detailed analyses revealed new pathophysiological mechanisms: 25% (15/59) of variants demonstrated LOF, characterized by a "shift" of the voltage-dependent activation to more positive voltages, and nine variants resulted in a toxic gain-of-function, associated with a disrupted gate allowing inward transport at negative voltages. Functional results were not always in line with in silico pathogenicity scores, highlighting the complexity of pathogenicity assessment for accurate genetic counselling. The complex neurocognitive and psychiatric manifestations of this condition, and hitherto under-recognized impacts on growth, gastrointestinal function, and motor control are discussed. Including published cases, we summarize features in 122 individuals from 67 families with CLCN4-related neurodevelopmental condition and suggest future research directions with the aim of improving the integrated care for individuals with this diagnosis.


Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro-costo-mandibular syndrome.

  • Danielle C Lynch‎ et al.
  • Nature communications‎
  • 2014‎

Elucidating the function of highly conserved regulatory sequences is a significant challenge in genomics today. Certain intragenic highly conserved elements have been associated with regulating levels of core components of the spliceosome and alternative splicing of downstream genes. Here we identify mutations in one such element, a regulatory alternative exon of SNRPB as the cause of cerebro-costo-mandibular syndrome. This exon contains a premature termination codon that triggers nonsense-mediated mRNA decay when included in the transcript. These mutations cause increased inclusion of the alternative exon and decreased overall expression of SNRPB. We provide evidence for the functional importance of this conserved intragenic element in the regulation of alternative splicing and development, and suggest that the evolution of such a regulatory mechanism has contributed to the complexity of mammalian development.


A Primate-Specific Isoform of PLEKHG6 Regulates Neurogenesis and Neuronal Migration.

  • Adam C O'Neill‎ et al.
  • Cell reports‎
  • 2018‎

The mammalian neocortex has undergone remarkable changes through evolution. A consequence of such rapid evolutionary events could be a trade-off that has rendered the brain susceptible to certain neurodevelopmental and neuropsychiatric conditions. We analyzed the exomes of 65 patients with the structural brain malformation periventricular nodular heterotopia (PH). De novo coding variants were observed in excess in genes defining a transcriptomic signature of basal radial glia, a cell type linked to brain evolution. In addition, we located two variants in human isoforms of two genes that have no ortholog in mice. Modulating the levels of one of these isoforms for the gene PLEKHG6 demonstrated its role in regulating neuroprogenitor differentiation and neuronal migration via RhoA, with phenotypic recapitulation of PH in human cerebral organoids. This suggests that this PLEKHG6 isoform is an example of a primate-specific genomic element supporting brain development.


Integrating exome sequencing into a diagnostic pathway for epileptic encephalopathy: Evidence of clinical utility and cost effectiveness.

  • Elizabeth E Palmer‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2018‎

Epileptic encephalopathies are a devastating group of neurological conditions in which etiological diagnosis can alter management and clinical outcome. Exome sequencing and gene panel testing can improve diagnostic yield but there is no cost-effectiveness analysis of their use or consensus on how to best integrate these tests into clinical diagnostic pathways.


Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies.

  • Hanyin Cheng‎ et al.
  • American journal of human genetics‎
  • 2018‎

N-alpha-acetylation is a common co-translational protein modification that is essential for normal cell function in humans. We previously identified the genetic basis of an X-linked infantile lethal Mendelian disorder involving a c.109T>C (p.Ser37Pro) missense variant in NAA10, which encodes the catalytic subunit of the N-terminal acetyltransferase A (NatA) complex. The auxiliary subunit of the NatA complex, NAA15, is the dimeric binding partner for NAA10. Through a genotype-first approach with whole-exome or genome sequencing (WES/WGS) and targeted sequencing analysis, we identified and phenotypically characterized 38 individuals from 33 unrelated families with 25 different de novo or inherited, dominantly acting likely gene disrupting (LGD) variants in NAA15. Clinical features of affected individuals with LGD variants in NAA15 include variable levels of intellectual disability, delayed speech and motor milestones, and autism spectrum disorder. Additionally, mild craniofacial dysmorphology, congenital cardiac anomalies, and seizures are present in some subjects. RNA analysis in cell lines from two individuals showed degradation of the transcripts with LGD variants, probably as a result of nonsense-mediated decay. Functional assays in yeast confirmed a deleterious effect for two of the LGD variants in NAA15. Further supporting a mechanism of haploinsufficiency, individuals with copy-number variant (CNV) deletions involving NAA15 and surrounding genes can present with mild intellectual disability, mild dysmorphic features, motor delays, and decreased growth. We propose that defects in NatA-mediated N-terminal acetylation (NTA) lead to variable levels of neurodevelopmental disorders in humans, supporting the importance of the NatA complex in normal human development.


Expanding the spectrum of PEX16 mutations and novel insights into disease mechanisms.

  • Kishore R Kumar‎ et al.
  • Molecular genetics and metabolism reports‎
  • 2018‎

Zellweger syndrome spectrum disorders are caused by mutations in any of at least 12 different PEX genes. This includes PEX16, an important regulator of peroxisome biogenesis. Using whole genome sequencing, we detected previously unreported, biallelic variants in PEX16 [NM_004813.2:c.658G>A, p.(Ala220Thr) and NM_004813.2:c.830G>A, p.(Arg277Gln)] in an individual with leukodystrophy, spastic paraplegia, cerebellar ataxia, and craniocervical dystonia with normal plasma very long chain fatty acids. Using olfactory-neurosphere derived cells, a population of neural stem cells, we showed patient cells had reduced peroxisome density and increased peroxisome size, replicating previously reported findings in PEX16 cell lines. Along with alterations in peroxisome morphology, patient cells also had impaired peroxisome function with reduced catalase activity. Furthermore, patient cells had reduced oxidative stress levels after exposure to hydrogen-peroxide (H2O2), which may be a result of compensation by H2O2 metabolising enzymes other than catalase to preserve peroxisome-related cell functions. Our findings of impaired catalase activity and altered oxidative stress response are novel. Our study expands the phenotype of PEX16 mutations by including dystonia and provides further insights into the pathological mechanisms underlying PEX16-associated disorders. Additional studies of the full spectrum of peroxisomal dysfunction could improve our understanding of the mechanism underlying PEX16-associated disorders.


Whole exome and genome sequencing in mendelian disorders: a diagnostic and health economic analysis.

  • Lisa J Ewans‎ et al.
  • European journal of human genetics : EJHG‎
  • 2022‎

Whole genome sequencing (WGS) improves Mendelian disorder diagnosis over whole exome sequencing (WES); however, additional diagnostic yields and costs remain undefined. We investigated differences between diagnostic and cost outcomes of WGS and WES in a cohort with suspected Mendelian disorders. WGS was performed in 38 WES-negative families derived from a 64 family Mendelian cohort that previously underwent WES. For new WGS diagnoses, contemporary WES reanalysis determined whether variants were diagnosable by original WES or unique to WGS. Diagnostic rates were estimated for WES and WGS to simulate outcomes if both had been applied to the 64 families. Diagnostic costs were calculated for various genomic testing scenarios. WGS diagnosed 34% (13/38) of WES-negative families. However, contemporary WES reanalysis on average 2 years later would have diagnosed 18% (7/38 families) resulting in a WGS-specific diagnostic yield of 19% (6/31 remaining families). In WES-negative families, the incremental cost per additional diagnosis using WGS following WES reanalysis was AU$36,710 (£19,407;US$23,727) and WGS alone was AU$41,916 (£22,159;US$27,093) compared to WES-reanalysis. When we simulated the use of WGS alone as an initial genomic test, the incremental cost for each additional diagnosis was AU$29,708 (£15,705;US$19,201) whereas contemporary WES followed by WGS was AU$36,710 (£19,407;US$23,727) compared to contemporary WES. Our findings confirm that WGS is the optimal genomic test choice for maximal diagnosis in Mendelian disorders. However, accepting a small reduction in diagnostic yield, WES with subsequent reanalysis confers the lowest costs. Whether WES or WGS is utilised will depend on clinical scenario and local resourcing and availability.


Quantitative trait and transcriptome analysis of genetic complexity underpinning cardiac interatrial septation in mice using an advanced intercross line.

  • Mahdi Moradi Marjaneh‎ et al.
  • eLife‎
  • 2023‎

Unlike single-gene mutations leading to Mendelian conditions, common human diseases are likely to be emergent phenomena arising from multilayer, multiscale, and highly interconnected interactions. Atrial and ventricular septal defects are the most common forms of cardiac congenital anomalies in humans. Atrial septal defects (ASD) show an open communication between the left and right atria postnatally, potentially resulting in serious hemodynamic consequences if untreated. A milder form of atrial septal defect, patent foramen ovale (PFO), exists in about one-quarter of the human population, strongly associated with ischaemic stroke and migraine. The anatomic liabilities and genetic and molecular basis of atrial septal defects remain unclear. Here, we advance our previous analysis of atrial septal variation through quantitative trait locus (QTL) mapping of an advanced intercross line (AIL) established between the inbred QSi5 and 129T2/SvEms mouse strains, that show extremes of septal phenotypes. Analysis resolved 37 unique septal QTL with high overlap between QTL for distinct septal traits and PFO as a binary trait. Whole genome sequencing of parental strains and filtering identified predicted functional variants, including in known human congenital heart disease genes. Transcriptome analysis of developing septa revealed downregulation of networks involving ribosome, nucleosome, mitochondrial, and extracellular matrix biosynthesis in the 129T2/SvEms strain, potentially reflecting an essential role for growth and cellular maturation in septal development. Analysis of variant architecture across different gene features, including enhancers and promoters, provided evidence for the involvement of non-coding as well as protein-coding variants. Our study provides the first high-resolution picture of genetic complexity and network liability underlying common congenital heart disease, with relevance to human ASD and PFO.


Mob2 Insufficiency Disrupts Neuronal Migration in the Developing Cortex.

  • Adam C O'Neill‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2018‎

Disorders of neuronal mispositioning during brain development are phenotypically heterogeneous and their genetic causes remain largely unknown. Here, we report biallelic variants in a Hippo signaling factor-MOB2-in a patient with one such disorder, periventricular nodular heterotopia (PH). Genetic and cellular analysis of both variants confirmed them to be loss-of-function with enhanced sensitivity to transcript degradation via nonsense mediated decay (NMD) or increased protein turnover via the proteasome. Knockdown of Mob2 within the developing mouse cortex demonstrated its role in neuronal positioning. Cilia positioning and number within migrating neurons was also impaired with comparable defects detected following a reduction in levels of an upstream modulator of Mob2 function, Dchs1, a previously identified locus associated with PH. Moreover, reduced Mob2 expression increased phosphorylation of Filamin A, an actin cross-linking protein frequently mutated in cases of this disorder. These results reveal a key role for Mob2 in correct neuronal positioning within the developing cortex and outline a new candidate locus for PH development.


Co-design, implementation, and evaluation of plain language genomic test reports.

  • Gemma R Brett‎ et al.
  • NPJ genomic medicine‎
  • 2022‎

Understanding and communicating genomic results can be challenging for families and health professionals without genetic specialty training. Unlike modifying existing laboratory reports, plain language genomic test reports provide an opportunity for patient/family-centered approaches. However, emerging examples generally lack co-design and/or evaluation in real-world settings. Through co-design involving patient groups, plain language experts, educators, and genetic health professionals, plain language genomic test report templates were produced for common test outcomes in rare diseases. Eight plain language genomic test report templates were developed. These reports were piloted and evaluated as part of a national pediatric ultra-rapid genomic testing program. Family and genetic health professional experiences with report layout, content, and use were explored using surveys. Of 154 families and 107 genetic health professionals issued with reports, 51 families and 57 clinicians responded (RR = 33% and 53%, respectively). Most families (82%) found their report helpful in understanding the result. Reports were shared by 63% of families, predominantly with family members (72%), or health professionals (68%). Clinicians (15%) adapted the reports for other settings. Through co-design, plain language genomic test reports implemented in a real-world setting can facilitate patient/family and caregiver understanding and communication of genomic test purpose, outcome, and potential clinical implications.


De Novo Variants Disrupting the HX Repeat Motif of ATN1 Cause a Recognizable Non-Progressive Neurocognitive Syndrome.

  • Elizabeth E Palmer‎ et al.
  • American journal of human genetics‎
  • 2019‎

Polyglutamine expansions in the transcriptional co-repressor Atrophin-1, encoded by ATN1, cause the neurodegenerative condition dentatorubral-pallidoluysian atrophy (DRPLA) via a proposed novel toxic gain of function. We present detailed phenotypic information on eight unrelated individuals who have de novo missense and insertion variants within a conserved 16-amino-acid "HX repeat" motif of ATN1. Each of the affected individuals has severe cognitive impairment and hypotonia, a recognizable facial gestalt, and variable congenital anomalies. However, they lack the progressive symptoms typical of DRPLA neurodegeneration. To distinguish this subset of affected individuals from the DRPLA diagnosis, we suggest using the term CHEDDA (congenital hypotonia, epilepsy, developmental delay, digit abnormalities) to classify the condition. CHEDDA-related variants alter the particular structural features of the HX repeat motif, suggesting that CHEDDA results from perturbation of the structural and functional integrity of the HX repeat. We found several non-homologous human genes containing similar motifs of eight to 10 HX repeat sequences, including RERE, where disruptive variants in this motif have also been linked to a separate condition that causes neurocognitive and congenital anomalies. These findings suggest that perturbation of the HX motif might explain other Mendelian human conditions.


Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy.

  • Edwin P Kirk‎ et al.
  • American journal of human genetics‎
  • 2007‎

The T-box family transcription factor gene TBX20 acts in a conserved regulatory network, guiding heart formation and patterning in diverse species. Mouse Tbx20 is expressed in cardiac progenitor cells, differentiating cardiomyocytes, and developing valvular tissue, and its deletion or RNA interference-mediated knockdown is catastrophic for heart development. TBX20 interacts physically, functionally, and genetically with other cardiac transcription factors, including NKX2-5, GATA4, and TBX5, mutations of which cause congenital heart disease (CHD). Here, we report nonsense (Q195X) and missense (I152M) germline mutations within the T-box DNA-binding domain of human TBX20 that were associated with a family history of CHD and a complex spectrum of developmental anomalies, including defects in septation, chamber growth, and valvulogenesis. Biophysical characterization of wild-type and mutant proteins indicated how the missense mutation disrupts the structure and function of the TBX20 T-box. Dilated cardiomyopathy was a feature of the TBX20 mutant phenotype in humans and mice, suggesting that mutations in developmental transcription factors can provide a sensitized template for adult-onset heart disease. Our findings are the first to link TBX20 mutations to human pathology. They provide insights into how mutation of different genes in an interactive regulatory circuit lead to diverse clinical phenotypes, with implications for diagnosis, genetic screening, and patient follow-up.


Glibenclamide treatment in a Cantú syndrome patient with a pathogenic ABCC9 gain-of-function variant: Initial experience.

  • Alan Ma‎ et al.
  • American journal of medical genetics. Part A‎
  • 2019‎

Cantú syndrome (CS), characterized by hypertrichosis, distinctive facial features, and complex cardiovascular abnormalities, is caused by pathogenic variants in ABCC9 and KCNJ8 genes. These genes encode gain-of-function mutations in the regulatory (SUR2) and pore-forming (Kir6.1) subunits of KATP channels, respectively, suggesting that channel-blocking sulfonylureas could be a viable therapy. Here we report a neonate with CS, carrying a heterozygous ABCC9 variant (c.3347G>A, p.Arg1116His), born prematurely at 32 weeks gestation. Initial echocardiogram revealed a large patent ductus arteriosus (PDA), and high pulmonary pressures with enlarged right ventricle. He initially received surfactant and continuous positive airway pressure ventilation and was invasively ventilated for 4 weeks, until PDA ligation. After surgery, he still had ongoing bilevel positive airway pressure (BiPAP) requirement, but was subsequently weaned to nocturnal BiPAP. He was treated for pulmonary hypertension with Sildenafil, but failed to make further clinical improvement. A therapeutic glibenclamide trial was commenced in week 11 (initial dose of 0.05 mg-1 kg-1 day-1 in two divided doses). After 1 week of treatment, he began to tolerate time off BiPAP when awake, and edema improved. Glibenclamide was well tolerated, and the dose was slowly increased to 0.15 mg-1 kg-1 day-1 over the next 12 weeks. Mild transient hypoglycemia was observed, but there was no cardiovascular dysfunction. Confirmation of therapeutic benefit will require studies of more CS patients but, based on this limited experience, consideration should be given to glibenclamide as CS therapy, although problems associated with prematurity, and complications of hypoglycemia, might limit outcome in critically ill neonates with CS.


Application of Deep Learning Models for Automated Identification of Parkinson's Disease: A Review (2011-2021).

  • Hui Wen Loh‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2021‎

Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting over 6 million people globally. Although there are symptomatic treatments that can increase the survivability of the disease, there are no curative treatments. The prevalence of PD and disability-adjusted life years continue to increase steadily, leading to a growing burden on patients, their families, society and the economy. Dopaminergic medications can significantly slow down the progression of PD when applied during the early stages. However, these treatments often become less effective with the disease progression. Early diagnosis of PD is crucial for immediate interventions so that the patients can remain self-sufficient for the longest period of time possible. Unfortunately, diagnoses are often late, due to factors such as a global shortage of neurologists skilled in early PD diagnosis. Computer-aided diagnostic (CAD) tools, based on artificial intelligence methods, that can perform automated diagnosis of PD, are gaining attention from healthcare services. In this review, we have identified 63 studies published between January 2011 and July 2021, that proposed deep learning models for an automated diagnosis of PD, using various types of modalities like brain analysis (SPECT, PET, MRI and EEG), and motion symptoms (gait, handwriting, speech and EMG). From these studies, we identify the best performing deep learning model reported for each modality and highlight the current limitations that are hindering the adoption of such CAD tools in healthcare. Finally, we propose new directions to further the studies on deep learning in the automated detection of PD, in the hopes of improving the utility, applicability and impact of such tools to improve early detection of PD globally.


Acceptability and feasibility of an online information linker service for caregivers who have a child with genetic epilepsy: a mixed-method pilot study protocol.

  • Eden G Robertson‎ et al.
  • BMJ open‎
  • 2022‎

Developmental and epileptic encephalopathies (DEEs) are rare epilepsy conditions that collectively impact 1 in 2000 children. They are highly genetically heterogeneous, resulting in significant barriers to accurate and adequate information for caregivers. This can lead to increased distress and dissatisfaction with the healthcare system. To address this gap, we developed 'GenE Compass' to provide caregivers with the highest-quality possible, understandable and relevant information in response to specific questions about their child's DEE. Using a mixed-method design, we will now pilot GenE Compass to evaluate the acceptability to caregivers and clinicians, feasibility and impact to caregivers.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: