Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

On the mechanism of the antidepressant-like action of group II mGlu receptor antagonist, MGS0039.

  • Agnieszka Pałucha-Poniewiera‎ et al.
  • Psychopharmacology‎
  • 2010‎

Several studies have suggested that modulation of the glutamatergic system could be a new, efficient way to achieve antidepressant activity. Behavioral data showed that group II mGlu receptor antagonists (i.e., (1R, 2R, 3R, 5R, 6R)-2-amino-3-(3,4-dichlorobenzyloxy)-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (MGS0039) and (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xan th-9-yl) propanoic acid (LY341495)) elicited antidepressant activity in several animal models of depression in rats and/or mice. Although the antidepressant-like activity of MGS0039 and LY341495 is well documented, the mechanism of the antidepressant action of these compounds is still not clear.


Novel 4-aryl-pyrido[1,2-c]pyrimidines with dual SSRI and 5-HT(1A) activity. Part 5.

  • Anna Gomółka‎ et al.
  • European journal of medicinal chemistry‎
  • 2015‎

A series of novel 4-aryl-pyrido[1,2-c]pyrimidine derivatives containing a 1-(2-quinoline)piperazine moiety was synthesized. The chemical structure of new compounds was confirmed by FT-IR, (1)H NMR, (13)C NMR and HRMS spectra as well as elemental analysis. Affinity of the novel pyrido[1,2-c]pyrimidine derivatives for 5-HT1A, 5-HT2A receptors and serotonin transporter (SERT) was evaluated in an in vitro radioligand binding assay. Tested compounds showed moderate to high affinity for 5-HT1AR and SERT and low affinity for 5-HT2AR. Selected ligands were subjected to in vivo tests, such as induced hypothermia and the forced swimming test in mice, which determined presynaptic agonistic activity of the ligands 8d, 8e, 9d and 9e and presynaptic antagonistic activity of the ligands 8a, 8b, 9a, 9b. Additionally, metabolic stability evaluation was performed for selected ligands, proving that a para-substitution in the 4-aryl-pyrido[1,2-c]pyrimidine moiety leads to an increase in stability, whereas a substitution in the ortho-position lowers the stability.


Trade-offs between male fertility reduction and selected growth factors or the klotho response in a lipopolysaccharide-dependent mouse model.

  • Przemyslaw Solek‎ et al.
  • Toxicological research‎
  • 2022‎

The increasing number of depression cases leads to a greater need for new antidepressant treatment development. It is postulated that antidepressants may harm male fertility, but the cellular mechanism is still poorly understood. The role of growth factors and klotho protein in maintaining normal male reproductive function is well documented. Hence, the study aimed to investigate the effect of the antidepressant drug - imipramine (tricyclic AD), and other substances with antidepressant potential (ALS), administered in combination or in combination with LPS (an animal model of depression) on gene expression and protein synthesis of IGF-2 (insulin-like growth factor 2), TGF-β1 (transforming growth factor β1), NGF (nerve growth factor), KGF (keratinocyte growth factor) and protein synthesis of VEGF-A (vascular endothelial growth factor A), IGF-IR (insulin-like growth factor receptor 1), EGFR (epidermal growth factor receptor) and klotho in the testis of mice. Mice were injected intraperitoneally with selected ALS and LPS or 10% DMSO (controls) (n = 7/group) once a day for 14 days. Animals were decapitated and testes collected for RNA and protein purification. PCR and western blot methods were employed for the evaluation of growth factors and klotho expression. The results obtained indicated a decreased level of most of the analyzed genes and proteins, except KGF; its expression increased after treatment with MTEP and IMI administrated individually and after NS-398, and IMI in combination with LPS. Our results may suggest that the tested ALS and LPS can contribute to a reduction of male fertility, but NS-398, IMI, and IMI+NS-398 may also act as stimulants after LPS.


Opposing efficacy of group III mGlu receptor activators, LSP1-2111 and AMN082, in animal models of positive symptoms of schizophrenia.

  • Joanna M Wierońska‎ et al.
  • Psychopharmacology‎
  • 2012‎

Several studies have suggested that modulation of the glutamatergic system via metabotropic glutamate receptors (mGlu) could be a new and efficient way to achieve antipsychotic-like activity.


Sex-dependent adaptive changes in serotonin-1A autoreceptor function and anxiety in Deaf1-deficient mice.

  • Christine Luckhart‎ et al.
  • Molecular brain‎
  • 2016‎

The C (-1019) G rs6295 promoter polymorphism of the serotonin-1A (5-HT1A) receptor gene is associated with major depression in several but not all studies, suggesting that compensatory mechanisms mediate resilience. The rs6295 risk allele prevents binding of the repressor Deaf1 increasing 5-HT1A receptor gene transcription, and the Deaf1-/- mouse model shows an increase in 5-HT1A autoreceptor expression. In this study, Deaf1-/- mice bred on a mixed C57BL6-BALB/c background were compared to wild-type littermates for 5-HT1A autoreceptor function and behavior in males and females. Despite a sustained increase in 5-HT1A autoreceptor binding levels, the amplitude of the 5-HT1A autoreceptor-mediated current in 5-HT neurons was unaltered in Deaf1-/- mice, suggesting compensatory changes in receptor function. Consistent with increased 5-HT1A autoreceptor function in vivo, hypothermia induced by the 5-HT1A agonist DPAT was augmented in early generation male but not female Deaf1-/- mice, but was reduced with succeeding generations. Loss of Deaf1 resulted in a mild anxiety phenotype that was sex-and test-dependent, with no change in depression-like behavior. Male Deaf1 knockout mice displayed anxiety-like behavior in the open field and light-dark tests, while female Deaf1-/- mice showed increased anxiety only in the elevated plus maze. These data show that altered 5-HT1A autoreceptor regulation in male Deaf1-/- mice can be compensated for by generational adaptation of receptor response that may help to normalize behavior. The sex dependence of Deaf1 function in mice is consistent with a greater role for 5-HT1A autoreceptors in sensitivity to depression in men.


Evidence for the interaction of COX-2 with mGluR5 in the regulation of EAAT1 and EAAT3 protein levels in the mouse hippocampus. The influence of oxidative stress mechanisms.

  • Katarzyna Stachowicz‎ et al.
  • Brain research‎
  • 2021‎

Since we found that inhibition of cyclooxygenase-2 (COX-2) with concomitant application of a metabotropic glutamate receptor subtype 5 (mGluR5) antagonist (MTEP) down-regulates mGluR7 in the hippocampus (HC) and changes behavior of mice, our team decided to investigate the mechanism responsible for the observed changes. The amino acid glutamate (Glu) is a major excitatory neurotransmitter in the brain. Glu uptake is regulated by excitatory amino acid transporters (EAAT). There are five transporters with documented expression in neurons and glia in the central nervous system (CNS). EAATs, maintain the correct transmission of the Glu signal and prevent its toxic accumulation by removing Glu from the synapse. It has been documented that the toxic level of Glu is one of the main causes of mental and cognitive abnormalities. Given the above mechanisms involved in the functioning of the Glu synapse, we hypothesized modification of Glu uptake, involving EAATs as the cause of the observed changes. This study investigated the level of selected EAATs in the HC after chronic treatment with mGluR5 antagonist MTEP, NS398, and their combination using Western blot. Concomitant MTEP treatment with NS398 or a single administration of the above causes changes in LTP and modulation of EAAT levels in mouse HC. As EAATs are cellular markers of oxidative stress mechanisms, the E. coli lipopolysaccharide (LPS) challenge was performed. The modified Barnes maze test (MBM) revealed alterations in the mouse spatial learning abilities. This study reports an interaction between the mGluR5 and COX-2 in the HC, with EAAT1 and EAAT3 involvement.


Concentration-Dependent Dual Mode of Zn Action at Serotonin 5-HT1A Receptors: In Vitro and In Vivo Studies.

  • Grzegorz Satała‎ et al.
  • Molecular neurobiology‎
  • 2016‎

Recent data has indicated that Zn can modulate serotonergic function through the 5-HT1A receptor (5-HT1AR); however, the exact mechanisms are unknown. In the present studies, radioligand binding assays and behavioural approaches were used to characterize the pharmacological profile of Zn at 5-HT1ARs in more detail. The influence of Zn on agonist binding to 5-HT1ARs stably expressed in HEK293 cells was investigated by in vitro radioligand binding methods using the agonist [3H]-8-OH-DPAT. The in vivo effects of Zn were compared with those of 8-OH-DPAT in hypothermia, lower lip retraction (LLR), 5-HT behavioural syndrome and the forced swim (FST) tests. In the in vitro studies, biphasic effects, which involved allosteric potentiation of agonist binding at sub-micromolar Zn concentrations and inhibition at sub-millimolar Zn concentrations, were found. The in vivo studies showed that Zn did not induce LLR or elements of 5-HT behavioural syndrome but blocked such effects induced by 8-OH-DPAT. Zn decreased body temperature in rats and mice; however, Zn failed to induce hypothermia in the 5-HT1A autoreceptor knockout mice. In the FST, Zn potentiated the effect of 8-OH-DPAT. However, in the FST performed with the 5-HT1A autoreceptor knockout mice, the anti-immobility effect of Zn was partially blocked. Both the binding and behavioural studies suggest a concentration-dependent dual mechanism of Zn action at 5-HT1ARs, with potentiation at low dose and inhibition at high dose. Moreover, the in vivo studies indicate that Zn can modulate both presynaptic and postsynaptic 5-HT1ARs; however, Zn's effects at presynaptic receptors seem to be more potent.


IGF-1 as selected growth factor multi-response to antidepressant-like substances activity in C57BL/6J mouse testis model.

  • Anna Tabecka-Lonczynska‎ et al.
  • Acta histochemica‎
  • 2021‎

Insulin-like growth factor (IGF-1) affects almost all cells in the body. Extremely important functions of this growth factor have been demonstrated in the brain and the reproductive system of both, females and males. Also, it is considered as a pro-inflammatory cytokine adjusting tissue homeostasis. However, it seems to play a special role in the male reproductive system and it may be disturbed by the application of antidepressants with different mechanisms of drug action during therapy. To date, the effect of antidepressant-like substances (ALS) on the course of physiological processes in male testicular cells is poorly understood. Therefore, the purpose of the research was to determine the presence, localizationof IGF-1R (insulin-like growth factor 1 β receptor) and mRNA gene expression of IGF-1R and IGF-1 after administration of 3-[(2-methyl-1,3-tiazol-4-yl)ethynyl]-pyridine (MTEP) and N-[2-(Cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398) in the different scheme in the testis of mice. Imipramine was used as a reference drug having a documented interaction with the mGluR5 receptors. The immunohistochemical analyses showed the localization of IGF-1R in Sertoli, Leydig, and germinal cells after all used substances. Differences in receptor localization were observed depending on the drugs applied and the type of analyzed cells. In contrast, there was a significant increase in IGF-1 gene expression after IMI + NS-398 and in IGF-1R after MTEP + NS-398 and IMI + NS-398 administration. It can, therefore, be assumed that the use of a combination of NS-398 with some ALS may run different mechanisms of action and affect the regulation of reproductive function in mouse testis through maintaining homeostasis at the molecular and immunological levels related to IGF.


Elucidating the molecular mechanisms underlying the induction of autophagy by antidepressant-like substances in C57BL/6J mouse testis model upon LPS challenge.

  • Przemysław Sołek‎ et al.
  • Cell communication and signaling : CCS‎
  • 2023‎

The treatment of depression with pharmaceuticals is associated with many adverse side effects, including male fertility problems. The precise mechanisms by which these agents affect testicular cells remain largely unknown, but they are believed to induce cellular stress, which is sensed by the endoplasmic reticulum (ER) and the Golgi apparatus. These organelles are responsible for maintaining cellular homeostasis and regulating signal pathways that lead to autophagy or apoptosis. Therefore, in this study, we aimed to investigate the autophagy, ER, and Golgi stress-related pathways in mouse testis following treatment with antidepressant-like substances (ALS) and ALS combined with lipopolysaccharide (LPS). We found that most ALS and activated proteins are associated with the induction of apoptosis. However, when imipramine (IMI) was combined with NS-398 (a cyclooxygenase-2 inhibitor) after LPS administration, we observed a marked increase in the BECLIN1, Bcl-2, ATG16L, and LC3 expression, which are marker proteins of autophagosome formation. The expression of the BECN1 and ATG16L genes was also high compared to the control, indicating the induction of autophagy processes that may potentially protect mouse testicular cells from death and regulate metabolism in the testis. Our findings may provide a better understanding of the stress-related effects of specific ALS on the testis. Video Abstract.


Loss of Adult 5-HT1A Autoreceptors Results in a Paradoxical Anxiogenic Response to Antidepressant Treatment.

  • Valérie Turcotte-Cardin‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2019‎

Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are first-line antidepressants but require several weeks to elicit their actions. Chronic SSRI treatment induces desensitization of 5-HT1A autoreceptors to enhance 5-HT neurotransmission. Mice (both sexes) with gene deletion of 5-HT1A autoreceptors in adult 5-HT neurons (1AcKO) were tested for response to SSRIs. Tamoxifen-induced recombination in adult 1AcKO mice specifically reduced 5-HT1A autoreceptor levels. The 1AcKO mice showed a loss of 5-HT1A autoreceptor-mediated hypothermia and electrophysiological responses, but no changes in anxiety- or depression-like behavior. Subchronic fluoxetine (FLX) treatment induced an unexpected anxiogenic effect in 1AcKO mice in the novelty suppressed feeding and elevated plus maze tests, as did escitalopram in the novelty suppressed feeding test. No effect was seen in wild-type (WT) mice. Subchronic FLX increased 5-HT metabolism in prefrontal cortex, hippocampus, and raphe of 1AcKO but not WT mice, suggesting hyperactivation of 5-HT release. To detect chronic cellular activation, FosB+ cells were quantified. FosB+ cells were reduced in entorhinal cortex and hippocampus (CA2/3) and increased in dorsal raphe 5-HT cells of 1AcKO mice, suggesting increased raphe activation. In WT but not 1AcKO mice, FLX reduced FosB+ cells in the median raphe, hippocampus, entorhinal cortex, and median septum, which receive rich 5-HT projections. Thus, in the absence of 5-HT1A autoreceptors, SSRIs induce a paradoxical anxiogenic response. This may involve imbalance in activation of dorsal and median raphe to regulate septohippocampal or fimbria-fornix pathways. These results suggest that markedly reduced 5-HT1A autoreceptors may provide a marker for aberrant response to SSRI treatment.SIGNIFICANCE STATEMENT Serotonin-selective reuptake inhibitors (SSRIs) are effective in treating anxiety and depression in humans and mouse models. However, in some cases, SSRIs can increase anxiety, but the mechanisms involved are unclear. Here we show that, rather than enhancing SSRI benefits, adulthood knockout (KO) of the 5-HT1A autoreceptor, a critical negative regulator of 5-HT activity, results in an SSRI-induced anxiety effect that appears to involve a hyperactivation of the 5-HT system in certain brain areas. Thus, subjects with very low levels of 5-HT1A autoreceptors, such as during childhood or adolescence, may be at risk for an SSRI-induced anxiety response.


Indomethacin, a nonselective cyclooxygenase inhibitor, does not interact with MTEP in antidepressant-like activity, as opposed to imipramine in CD-1 mice.

  • Katarzyna Stachowicz‎
  • European journal of pharmacology‎
  • 2020‎

The contribution of metabotropic glutamate receptors (mGlu receptors) in depression is well known and tested worldwide. Our previous study showed the involvement of the cyclooxygenase-2 (COX-2) pathway in behavioral changes mediated by an antagonist of metabotropic glutamate receptor subtype 5 (mGlu5 receptor) 3-[(2-methyl-1,3-tiazol-4-yl)ethynyl]-pyridine (MTEP). Among others, we have found that chronic concomitant administration of a COX-2 inhibitor and sub-effective dose of MTEP accelerates antidepressant-like activity of MTEP. This paper seeks to explore whether the same effect would be observed with the use of a non-selective COX inhibitor 2-[1-(4-chlorobenzoyl)-5-methoxy-2-methylindol-3-yl]acetic acid (indomethacin). To that end, we have employed experimental procedure implemented in the earlier research. MTEP and indomethacin or MTEP + indomethacin were used chronically for 7 or 14 days. Then, the Porsolt test, tail suspension test and locomotor activity test were performed. Imipramine was used as a reference compound, as its action is connected with mGlu5 receptor. We found that, in contrast to COX-2 inhibition, indomethacin - acting both through COX-1 and COX-2 - did not release antidepressant-like potential of MTEP. The opposite effect was shown when imipramine was used.


Behavioral consequences of co-administration of MTEP and the COX-2 inhibitor NS398 in mice. Part 1.

  • Katarzyna Stachowicz‎
  • Behavioural brain research‎
  • 2019‎

The immunologic modulation of glutamate (Glu) neurotransmission is a topic of great interest. Neuroinflammation is an intrinsic component of neurodegenerative diseases, as well as a factor responsible for cognitive and behavioral changes. Cyclooxygenase-2 (COX-2) expression in the brain was shown to be associated with inflammation. COX-2 is also widely expressed in the brain including neurons and glia and participates in fundamental brain functions, e.g. in synaptic plasticity or memory consolidation. Furthermore, COX-2/Glu interplay has been reported, while metabotropic glutamate receptors (mGluRs) are known to contribute to plastic changes and to behavior. The primary goal of this study was to explain the behavioral consequences of the modulation of the glutamatergic pathway via the interaction of the mGlu5 receptor and COX-2, utilizing a panel of behavioral tests.


NS398, a cyclooxygenase-2 inhibitor, reverses memory performance disrupted by imipramine in C57Bl/6J mice.

  • Katarzyna Stachowicz‎ et al.
  • Brain research‎
  • 2020‎

Imipramine has been widely used as an antidepressant in the clinic over the years. Unfortunately, it produces a detrimental effect on memory. At the same time, COX-2 inhibitors engagement in the mechanisms of memory formation, and synapse plastic changes has been well documented. Our previous studies have demonstrated the contribution of cyclooxygenase-2 (COX-2) inhibition to the parameters of the mGluR5 pathway in memory formation. Because chronic administration of imipramine has been shown to affect mGluR5, the purpose of this study was to verify the hypothesis of COX-2 pathway engagement in disrupting effects of imipramine. Imipramine is currently used as a reference compound, and therefore it seems important to decipher and understand mood-related pathways, as well as cognitive changes activated during its use. This study covers the examination of spatial, and motor parameters. To this end, C57Bl/6J mice received imipramine, and NS398 (a COX-2 inhibitor) alone, or in combination for 7 or 14 days. We performed the modified Barnes maze (MBM), modified rotarod (MR) tests, and electrophysiological studies. The harmful effect of imipramine on MBM learning was improved by NS398 use. The same modulatory role of the COX-2 inhibitor in procedural learning in the MR test was found. In conclusion, our data show the involvement of the COX-2 pathway in changes in the long-term memory, and procedural memory of C57Bl/6J mice after chronic imipramine treatment.


Synthesis and biological evaluation of new multi-target 3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives with potential antidepressant effect.

  • Martyna Z Wróbel‎ et al.
  • European journal of medicinal chemistry‎
  • 2019‎

A series of novel 3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives were synthesised and evaluated for their 5-HT1A/D2/5-HT2A/5-HT6/5-HT7 receptor affinity and serotonin reuptake inhibition. Most of the evaluated compounds displayed high affinities for 5-HT1A receptors (e.g., 4cKi = 2.3 nM, 4lKi = 3.2 nM). The antidepressant activity of the selected compounds was screened in vivo using the forced swim test (FST). The results indicate that compound MW005 (agonist of the pre- and postsynaptic 5-HT1A receptor) exhibited promising affinities for the 5-HT1A/SERT/D2/5-HT6/5-HT7 receptors and showed an antidepressant-like activity in the FST model.


Synthesis of Novel Pyrido[1,2-c]pyrimidine Derivatives with 6-Fluoro-3-(4-piperidynyl)-1,2-benzisoxazole Moiety as Potential SSRI and 5-HT1A Receptor Ligands.

  • Marek Król‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Two series of novel 4-aryl-2H-pyrido[1,2-c]pyrimidine (6a-i) and 4-aryl-5,6,7,8-tetrahydropyrido[1,2-c]pyrimidine (7a-i) derivatives were synthesized. The chemical structures of the new compounds were confirmed by 1H and 13C NMR spectroscopy and ESI-HRMS spectrometry. The affinities of all compounds for the 5-HT1A receptor and serotonin transporter protein (SERT) were determined by in vitro radioligand binding assays. The test compounds demonstrated very high binding affinities for the 5-HT1A receptor of all derivatives in the series (6a-i and 7a-i) and generally low binding affinities for the SERT protein, with the exception of compounds 6a and 7g. Extended affinity tests for the receptors D2, 5-HT2A, 5-HT6 and 5-HT7 were conducted with regard to selected compounds (6a, 7g, 6d and 7i). All four compounds demonstrated very high affinities for the D2 and 5-HT2A receptors. Compounds 6a and 7g also had high affinities for 5-HT7, while 6d and 7i held moderate affinities for this receptor. Compounds 6a and 7g were also tested in vivo to identify their functional activity profiles with regard to the 5-HT1A receptor, with 6a demonstrating the activity profile of a presynaptic agonist. Metabolic stability tests were also conducted for 6a and 6d.


Upregulation of the mGlu5 receptor and COX-2 protein in the mouse brain after imipramine and NS398, searching for mechanisms of regulation.

  • Katarzyna Stachowicz‎ et al.
  • Neurochemistry international‎
  • 2021‎

Imipramine belongs to a group of tricyclic antidepressants (TCAs). It has been also documented that its antidepressant activity connects with the modulation of cytosolic phospholipase A2 (cPLA2) and arachidonic acid (AA) turnover. Through this mechanism, imipramine can indirectly modify glutamate (Glu) transmission. Additionally, it has been shown that chronic treatment with imipramine results in the upregulation of the metabotropic glutamate receptor subtype 5 (mGlu5 receptor) in the hippocampus of rats. Our previous study revealed that manipulation of the AA pathway via inhibition of cyclooxygenase-2 (COX-2) by selective COX-2 inhibitor (NS398) could effectively modulate the behavior of mice treated with imipramine. Here, we hypothesized that COX-2 inhibition could similarly to imipramine influence mGlu5 receptor, and thus NS398 can modulate the effect of imipramine on Glu. Moreover, such regulation changes should correspond with alterations in neurotransmission. Increased cPLA activity after imipramine administration may change the activity of the AA pathway and the endocannabinoid metabolism, e.g., 2-Arachidonyl-glycerol (2-AG). To verify the idea, mGlu5 receptor level was investigated in the hippocampus (HC) and prefrontal cortex (PFC) of mice treated for 7 or 14 days with imipramine and/or COX-2 inhibitor: NS398. Western blot and PCR analyses were conducted. Moreover, the excitatory (Glu) and inhibitory (gamma-aminobutyric acid; GABA) neurotransmitters were measured using HPLC and 2-AG using ELISA. A time-dependent change in mGlu5 receptor and COX-2 protein level, COX-2 expression, and 2-AG level in the PFC after imipramine administration was found. Up-regulation of mGlu5 receptor after NS398 was found in HC and PFC. A structure-dependent shift between excitatory vs. inhibitory transmission was detected when NS398 and imipramine were co-administered.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: