Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,358 papers

Interactive mechanism between avian infectious bronchitis S1 protein T cell peptide and avian MHC I molecule.

  • Feng-zhu Zhu‎ et al.
  • Virus research‎
  • 2016‎

This study aims to construct a 3D structure of the avian major histocompatibility complex (MHC)-β2M complex through homology modelling technology, perform molecular docking of the predicted infectious bronchitis virus (IBV) S1 protein potential epitope peptide Sp6 (NQFYIKLT) and the avian MHC-β2M complex, and demonstrate the interactive mechanism between Sp6 and MHC using molecular dynamical simulations. The peptide Sp6 and the non-related peptide NP89-97 (PKKTGGPIY) were used to stimulate in vitro recombinant plasmid (pCAGGS-S1) avian splenic lymphocytes. Flow cytometric results show that CD8(+) T lymphocytes reproduce stimulated by the Sp6 and the nonrelated peptide proliferate by 34.8% and 2.6%, respectively. Meanwhile, fluorescent quantitative PCR results show that the secretion of IFN-γ in avian splenic lymphocytes increases after Sp6 stimulation. These data suggest that Sp6 can induce the activated avian lymphocytes in vitro to produce CTL, which is the CTL epitope in IBV S1.


Co-immunoprecipitation with Tau Isoform-specific Antibodies Reveals Distinct Protein Interactions and Highlights a Putative Role for 2N Tau in Disease.

  • Chang Liu‎ et al.
  • The Journal of biological chemistry‎
  • 2016‎

Alternative splicing generates multiple isoforms of the microtubule-associated protein Tau, but little is known about their specific function. In the adult mouse brain, three Tau isoforms are expressed that contain either 0, 1, or 2 N-terminal inserts (0N, 1N, and 2N). We generated Tau isoform-specific antibodies and performed co-immunoprecipitations followed by tandem mass tag multiplexed quantitative mass spectrometry. We identified novel Tau-interacting proteins of which one-half comprised membrane-bound proteins, localized to the plasma membrane, mitochondria, and other organelles. Tau was also found to interact with proteins involved in presynaptic signal transduction. MetaCore analysis revealed one major Tau interaction cluster that contained 33 Tau pulldown proteins. To explore the pathways in which these proteins are involved, we conducted an ingenuity pathway analysis that revealed two significant overlapping pathways, "cell-to-cell signaling and interaction" and "neurological disease." The functional enrichment tool DAVID showed that in particular the 2N Tau-interacting proteins were specifically associated with neurological disease. Finally, for a subset of Tau interactions (apolipoprotein A1 (apoA1), apoE, mitochondrial creatine kinase U-type, β-synuclein, synaptogyrin-3, synaptophysin, syntaxin 1B, synaptotagmin, and synapsin 1), we performed reverse co-immunoprecipitations, confirming the preferential interaction of specific isoforms. For example, apoA1 displayed a 5-fold preference for the interaction with 2N, whereas β-synuclein showed preference for 0N. Remarkably, a reverse immunoprecipitation with apoA1 detected only the 2N isoform. This highlights distinct protein interactions of the different Tau isoforms, suggesting that they execute different functions in brain tissue.


Emotional Modulation of Conflict Processing in the Affective Domain: Evidence from Event-related Potentials and Event-related Spectral Perturbation Analysis.

  • Jianling Ma‎ et al.
  • Scientific reports‎
  • 2016‎

Previous studies have revealed the impact of emotion on conflict processing. The present study was conducted to investigate whether cognitive control in the affective domain is also affected by emotion. Emotional face-word and body-word Stroop tasks were explored and contrasted, and both behavioural and electrophysiological measures were recorded. Behavioural results showed that both tasks replicated previous robust interference effects. At the physiological level, the two tasks showed dissociable neural activity in the early attention and perception stages. It was also found that the face-word task evoked more pronounced N1 and P2 amplitudes than the body-word task. However, the two tasks evoked comparable N450 amplitudes. At later processing stages, positive slow potentials were modulated by target emotion and congruency. In addition, time-frequency analyses also revealed that the face-word task induced enhanced theta activity compared to the body-word task at both early and later stages of processing. The present findings provide support for the dual competition framework and suggest the dynamic modulation of emotion on cognitive control in the affective domain.


Evodiamine Attenuates PDGF-BB-Induced Migration of Rat Vascular Smooth Muscle Cells through Activating PPARγ.

  • Xie Ge‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

The uncontrolled migration of vascular smooth muscle cells (VSMCs) into the intima is a critical process in the development of atherosclerosis. Evodiamine, an indole alkaloid extracted from the Chinese medicine evodia, has been shown to inhibit tumor cell invasion and protect the cardiovascular system, but its effects on VSMCs remain unknown. In the present study, we investigated the inhibitory effects of evodiamine on the platelet-derived growth factor-BB (PDGF-BB)-induced VSMC migration using wound healing and transwell assays, and assessed its role in decreasing the protein levels of matrix metalloproteinases and cell adhesion molecules. More importantly, we found that evodiamine activated the expression and nuclear translocation of peroxisome proliferator-activated receptor γ (PPARγ). Inhibition of PPARγ activity by using its antagonist T0070907 and its specific siRNA oligonucleotides significantly attenuated the inhibitory effects of evodiamine on VSMC migration. Taken together, our results indicate a promising anti-atherogenic effect of evodiamine through attenuation of VSMC migration by activating PPARγ.


Yersinia spp. Identification Using Copy Diversity in the Chromosomal 16S rRNA Gene Sequence.

  • Huijing Hao‎ et al.
  • PloS one‎
  • 2016‎

API 20E strip test, the standard for Enterobacteriaceae identification, is not sufficient to discriminate some Yersinia species for some unstable biochemical reactions and the same biochemical profile presented in some species, e.g. Yersinia ferderiksenii and Yersinia intermedia, which need a variety of molecular biology methods as auxiliaries for identification. The 16S rRNA gene is considered a valuable tool for assigning bacterial strains to species. However, the resolution of the 16S rRNA gene may be insufficient for discrimination because of the high similarity of sequences between some species and heterogeneity within copies at the intra-genomic level. In this study, for each strain we randomly selected five 16S rRNA gene clones from 768 Yersinia strains, and collected 3,840 sequences of the 16S rRNA gene from 10 species, which were divided into 439 patterns. The similarity among the five clones of 16S rRNA gene is over 99% for most strains. Identical sequences were found in strains of different species. A phylogenetic tree was constructed using the five 16S rRNA gene sequences for each strain where the phylogenetic classifications are consistent with biochemical tests; and species that are difficult to identify by biochemical phenotype can be differentiated. Most Yersinia strains form distinct groups within each species. However Yersinia kristensenii, a heterogeneous species, clusters with some Yersinia enterocolitica and Yersinia ferderiksenii/intermedia strains, while not affecting the overall efficiency of this species classification. In conclusion, through analysis derived from integrated information from multiple 16S rRNA gene sequences, the discrimination ability of Yersinia species is improved using our method.


Puerarin transport across a Calu-3 cell monolayer - an in vitro model of nasal mucosa permeability and the influence of paeoniflorin and menthol.

  • Lin Zhang‎ et al.
  • Drug design, development and therapy‎
  • 2016‎

Nasal administration is a high-potential delivery system, particularly because it can provide a pathway from the nose to the brain. The objective of this research is to characterize puerarin transport across a Calu-3 cell monolayer used as a model of the nasal mucosa and to evaluate the influence of puerarin in combination with paeoniflorin and menthol to explore the enhanced mechanism of the permeability at the cell level. The apparent permeability coefficients (P app) of puerarin bidirectional transport were both <1.5×10(-6) cm/s, and the efflux ratio was <1.5, indicating that puerarin alone exhibited poor absorption and that its transport primarily occurred by passive diffusion through the cell monolayer. When puerarin was coad ministered with paeoniflorin, the P app was not changed (P>0.05). However, the addition of menthol significantly (P<0.05) improved the P app of puerarin in both directions. Moreover, based on immunofluorescence experiments and transepithelial electrical resistance measurements, the data indicated that the drug compatibility opened tight junctions and weakened the barrier capabilities of epithelial cells, thereby promoting the permeability of puerarin.


Analysis of gene expression profile identifies potential biomarkers for atherosclerosis.

  • Luran Liu‎ et al.
  • Molecular medicine reports‎
  • 2016‎

The present study aimed to identify potential biomarkers for atherosclerosis via analysis of gene expression profiles. The microarray dataset no. GSE20129 was downloaded from the Gene Expression Omnibus database. A total of 118 samples from the peripheral blood of female patients was used, including 47 atherosclerotic and 71 non‑atherosclerotic patients. The differentially expressed genes (DEGs) in the atherosclerosis samples were identified using the Limma package. Gene ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses for DEGs were performed using the Database for Annotation, Visualization and Integrated Discovery tool. The recursive feature elimination (RFE) algorithm was applied for feature selection via iterative classification, and support vector machine classifier was used for the validation of prediction accuracy. A total of 430 DEGs in the atherosclerosis samples were identified, including 149 up‑ and 281 downregulated genes. Subsequently, the RFE algorithm was used to identify 11 biomarkers, whose receiver operating characteristic curves had an area under curve of 0.92, indicating that the identified 11 biomarkers were representative. The present study indicated that APH1B, JAM3, FBLN2, CSAD and PSTPIP2 may have important roles in the progression of atherosclerosis in females and may be potential biomarkers for early diagnosis and prognosis as well as treatment targets for this disease.


The Antitumor Effect of Gekko Sulfated Glycopeptide by Inhibiting bFGF-Induced Lymphangiogenesis.

  • Xiu-Li Ding‎ et al.
  • BioMed research international‎
  • 2016‎

Objective. To study the antilymphangiogenesis effect of Gekko Sulfated Glycopeptide (GSPP) on human lymphatic endothelial cells (hLECs). Methods. MTS was conducted to confirm the antiproliferation effect of GSPP on hLECs; flow cytometry was employed to detect hLECs cycle distribution; the antimigration effect of GSPP on hLECs was investigated by wound healing experiment and transwell experiment; tube formation assay was used to examine its inhibitory effect on the lymphangiogenesis; western blotting was conducted to detect the expression of extracellular signal-regulated kinase1/2 (Erk1/2) and p-Erk1/2 after GSPP and basic fibroblast growth factor (bFGF) treatment. Nude mice models were established to investigate the antitumor effect of GSPP in vivo. Decreased lymphangiogenesis caused by GSPP in vivo was verified by immunohistochemical staining. Results. In vitro, GSPP (10 μg/mL, 100 μg/mL) significantly inhibited bFGF-induced hLECs proliferation, migration, and tube-like structure formation (P < 0.05) and antagonized the phosphorylation activation of Erk1/2 induced by bFGF. In vivo, GSPP treatment (200 mg/kg/d) not only inhibited the growth of colon carcinoma, but also inhibited the tumor lymphangiogenesis. Conclusion. GSPP possesses the antitumor ability by inhibiting bFGF-inducing lymphangiogenesis in vitro and in vivo, which may further inhibit tumor lymphatic metastasis.


MicroRNA and messenger RNA profiling reveals new biomarkers and mechanisms for RDX induced neurotoxicity.

  • Youping Deng‎ et al.
  • BMC genomics‎
  • 2014‎

RDX is a well-known pollutant to induce neurotoxicity. MicroRNAs (miRNA) and messenger RNA (mRNA) profiles are useful tools for toxicogenomics studies. It is worthy to integrate MiRNA and mRNA expression data to understand RDX-induced neurotoxicity.


Clinical and genetic investigation of a multi-generational Chinese family afflicted with Von Hippel-Lindau disease.

  • Jingyao Zhang‎ et al.
  • Chinese medical journal‎
  • 2015‎

Von Hippel-Lindau (VHL) disease is a hereditary tumor disorder caused by mutations or deletions of the VHL gene. Few studies have documented the clinical phenotype and genetic basis of the occurrence of VHL disease in China. This study armed to present clinical and genetic analyses of VHL within a five-generation VHL family from Northwestern China, and summarize the VHL mutations and clinical characteristics of Chinese families with VHL according to previous studies.


ψ-Bufarenogin, a novel anti-tumor compound, suppresses liver cancer growth by inhibiting receptor tyrosine kinase-mediated signaling.

  • Jin Ding‎ et al.
  • Oncotarget‎
  • 2015‎

Resistance of hepatocellular carcinoma (HCC) to existing chemotherapeutic agents largely contributes to the poor prognosis of patients, and discovery of novel anti-HCC drug is in an urgent need. Herein we report ψ-Bufarenogin, a novel active compound that we isolated from the extract of toad skin, exhibited potent therapeutic effect in xenografted human hepatoma without notable side effects. In vitro, ψ-Bufarenogin suppressed HCC cells proliferation through impeding cell cycle progression, and it facilitated cell apoptosis by downregulating Mcl-1 expression. Moreover, ψ-Bufarenogin decreased the number of hepatoma stem cells through Sox2 depression and exhibited synergistic effect with conventional chemotherapeutics. Mechanistic study revealed that ψ-Bufarenogin impaired the activation of MEK/ERK pathway, which is essential in the proliferation of hepatoma cells. ψ-Bufarenogin notably suppressed PI3-K/Akt cascade, which was required in ψ-Bufarenogin-mediated reduction of Mcl-1 and Sox2. ψ-Bufarenogin inhibited the auto-phosphorylation and activation of epithelial growth factor receptor (EGFR) and hepatocyte growth factor receptor (c-Met), thereafter suppressed their primary downstream cascades Raf/MEK/ERK and PI3-K/Akt signaling. Taken together, ψ-Bufarenogin suppressed HCC growth via inhibiting, at least partially, receptor tyrosine kinases-regulated signaling, suggesting that ψ-Bufarenogin could be a novel lead compound for anti-HCC drug.


Contributions of renin-angiotensin system-related gene interactions to obesity in a Chinese population.

  • Jian-Bo Zhou‎ et al.
  • PloS one‎
  • 2012‎

Gene-gene interactions may be partly responsible for complex traits such as obesity. Increasing evidence suggests that the renin-angiotensin system (RAS) contributes to the etiology of obesity. How the epistasis of genes in the RAS contributes to obesity is still under research. We aim to evaluate the contribution of RAS-related gene interactions to a predisposition of obesity in a Chinese population.


A Novel Pharmacological Method to Study the Chinese Medicinal Formula Hua-Zheng-Hui-Sheng-Dan.

  • Rui Cao‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2015‎

Objectives. Hua-Zheng-Hui-Sheng-Dan (HZHSD) was used as an experimental model to explore research methods of large formulae in traditional Chinese medicine (TCM) using current molecular biology approaches. Materials and Methods. The trypan blue exclusion assay was used to determine cell viability and cell numbers. Flow cytometry was used to assess cell cycle distribution and apoptosis. The concentration of cyclin D1 was analyzed by enzyme-linked immunosorbent assay. The median effect principle was used in drug combination studies. An orthogonal experimental design was used to estimate the effects of each herb at different concentrations. The HeLa xenograft mouse model was used to compare the antitumor activity of drugs in vivo. Results. Among the 35 herbs that comprise HZHSD, Radix Rehmanniae Preparata (RRP), Caesalpinia sappan (CS), Evodia rutaecarpa (ER), Folium Artemisiae Argyi (FAA), Leonurus japonicus Houtt (LJH), Tumeric (Tu), Radix Paeoniae Alba (RPA), and Trogopterus Dung (TD) effectively inhibited the proliferation of HeLa and SKOV3 cells. Only RRR had an effect on HeLa and SKOV3 cell viability. According to the median effect principle, Angelica sinensis (Oliv.) (AS), Tabanus (Ta), and Pollen Typhae (PT), which were proven to have a significant synergistic inhibitory effect on the proliferation of HeLa cells, were added to the original eight positive herbs. The combination of RPA and AS had a synergistic effect on inducing cell cycle S phase arrest and decreasing intracellular cyclin D1 in HeLa cells. By orthogonal experimental design, LJH and Tu were considered unnecessary herbs. The small formula (SHZHSD) consisted of RPA, AS, RRR, Ta., TD, PT, ER, CS, and FAA and was able to inhibit cell proliferation and induce cell apoptosis. The antitumor effects of HZHSD and SHZHSD were also compared in vivo. Conclusions. Through molecular biology approaches both in vitro and in vivo, research into single drugs, and analysis using the median effect principle and orthogonal experimental design, the small formula (SHZHSD) was determined from the original formula (HZHSD). SHZHSD exhibited superior antitumor activity compared with the original formula both in vitro and in vivo.


Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage.

  • Elizabeth E Crouch‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2015‎

Adult neural stem cells reside in specialized niches. In the ventricular-subventricular zone (V-SVZ), quiescent neural stem cells (qNSCs) become activated (aNSCs), and generate transit amplifying cells (TACs), which give rise to neuroblasts that migrate to the olfactory bulb. The vasculature is an important component of the adult neural stem cell niche, but whether vascular cells in neurogenic areas are intrinsically different from those elsewhere in the brain is unknown. Moreover, the contribution of pericytes to the neural stem cell niche has not been defined. Here, we describe a rapid FACS purification strategy to simultaneously isolate primary endothelial cells and pericytes from brain microregions of nontransgenic mice using CD31 and CD13 as surface markers. We compared the effect of purified vascular cells from a neurogenic (V-SVZ) and non-neurogenic brain region (cortex) on the V-SVZ stem cell lineage in vitro. Endothelial and pericyte diffusible signals from both regions differentially promote the proliferation and neuronal differentiation of qNSCs, aNSCs, and TACs. Unexpectedly, diffusible cortical signals had the most potent effects on V-SVZ proliferation and neurogenesis, highlighting the intrinsic capacity of non-neurogenic vasculature to support stem cell behavior. Finally, we identify PlGF-2 as an endothelial-derived mitogen that promotes V-SVZ cell proliferation. This purification strategy provides a platform to define the functional and molecular contribution of vascular cells to stem cell niches and other brain regions under different physiological and pathological states.


Unraveling the kinetic diversity of microbial 3-dehydroquinate dehydratases of shikimate pathway.

  • Chang Liu‎ et al.
  • AMB Express‎
  • 2015‎

3-Dehydroquinate dehydratase (DHQase) catalyzes the conversion of 3-dehydroquinic acid to 3-dehydroshikimic acid of the shikimate pathway. In this study, 3180 prokaryotic genomes were examined and 459 DHQase sequences were retrieved. Based on sequence analysis and their original hosts, 38 DHQase genes were selected for chemical synthesis. The selected DHQases were translated into new DNA sequences according to the genetic codon usage bias by both Escherichia coli and Corynebacterium glutamicum. The new DNA sequences were customized for synthetic biological applications by adding Biobrick adapters at both ends and by removal of any related restriction endonuclease sites. The customized DHQase genes were successfully expressed in E. coli, and functional DHQases were obtained. Kinetic parameters of Km, kcat, and Vmax of DHQases were determined with a newly established high-throughput method for DHQase activity assay. Results showed that DHQases possessed broad strength of substrate affinities and catalytic capacities. In addition to the DHQase kinetic diversities, this study generated a DHQase library with known catalytic constants that could be applied to design artificial modules of shikimate pathway for metabolic engineering and synthetic biology.


PCAF-primed EZH2 acetylation regulates its stability and promotes lung adenocarcinoma progression.

  • Junhu Wan‎ et al.
  • Nucleic acids research‎
  • 2015‎

Enhancer of zeste homolog 2 (EZH2) is a key epigenetic regulator that catalyzes the trimethylation of H3K27 and is modulated by post-translational modifications (PTMs). However, the precise regulation of EZH2 PTMs remains elusive. We, herein, report that EZH2 is acetylated by acetyltransferase P300/CBP-associated factor (PCAF) and is deacetylated by deacetylase SIRT1. We identified that PCAF interacts with and acetylates EZH2 mainly at lysine 348 (K348). Mechanistically, K348 acetylation decreases EZH2 phosphorylation at T345 and T487 and increases EZH2 stability without disrupting the formation of polycomb repressive complex 2 (PRC2). Functionally, EZH2 K348 acetylation enhances its capacity in suppression of the target genes and promotes lung cancer cell migration and invasion. Further, elevated EZH2 K348 acetylation in lung adenocarcinoma patients predicts a poor prognosis. Our findings define a new mechanism underlying EZH2 modulation by linking EZH2 acetylation to its phosphorylation that stabilizes EZH2 and promotes lung adenocarcinoma progression.


Role of p38 mitogen-activated protein kinase in vascular endothelial aging: interaction with Arginase-II and S6K1 signaling pathway.

  • Zongsong Wu‎ et al.
  • Aging‎
  • 2015‎

p38 mitogen-activated protein kinase (p38) regulates cellular senescence and senescence-associated secretory phenotype (SASP), i.e., secretion of cytokines and/or chemokines. Previous work showed that augmented arginase-II (Arg-II) and S6K1 interact with each other to promote endothelial senescence through uncoupling of endothelial nitric oxide synthase (eNOS). Here we demonstrate eNOS-uncoupling, augmented expression/secretion of IL-6 and IL-8, elevation of p38 activation and Arg-II levels in senescent endothelial cells. Silencing Arg-II or p38α in senescent cells recouples eNOS and inhibits IL-6 and IL-8 secretion. Overexpression of Arg-II in young endothelial cells causes eNOS-uncoupling and enhances IL-6 and IL-8 expression/secretion, which is prevented by p38 inhibition or by antioxidant. Moreover, p38 activation and expression of IL-6 and KC (the murine IL-8 homologue) are increased in the heart and/or aortas of wild type (WT) old mice, which is abolished in mice with Arg-II gene deficiency (Arg-II-/-). In addition, inhibition of p38 in the old WT mice recouples eNOS function and reduces IL-6 and KC expression in the aortas and heart. Silencing Arg-II or p38a or S6K1 inhibits each other in senescence endothelial cells. Thus, Arg-II, p38, and S6K1 form a positive circuit which regulates endothelial senescence and cardiovascular aging.


Identification of fruit related microRNAs in cucumber (Cucumis sativus L.) using high-throughput sequencing technology.

  • Xueling Ye‎ et al.
  • Hereditas‎
  • 2014‎

MicroRNAs (miRNAs) are approximately 21 nt noncoding RNAs that influence the phenotypes of different species through the post-transcriptional regulation of gene expression. Although many miRNAs have been identified in a few model plants, less is known about miRNAs specific to cucumber (Cucumis sativus L.). In this study, two libraries of cucumber RNA, one based on fruit samples and another based on mixed samples from leaves, stems, and roots, were prepared for deep-sequencing. A total of 110 sequences were matched to known miRNAs in 47 families, while 56 sequences in 46 families are newly identified in cucumber. Of these, 77 known and 44 new miRNAs were differentially expressed, with a fold-change of at least 2 and p-value < 0.05. In addition, we predicted the potential targets of known and new miRNAs. The identification and characterization of known and new miRNAs will enable us to better understand the role of these miRNAs in the formation of cucumber fruit.


Melatonin lowers edema after spinal cord injury.

  • Cheng Li‎ et al.
  • Neural regeneration research‎
  • 2014‎

Melatonin has been shown to diminish edema in rats. Melatonin can be used to treat spinal cord injury. This study presumed that melatonin could relieve spinal cord edema and examined how it might act. Our experiments found that melatonin (100 mg/kg, i.p.) could reduce the water content of the spinal cord, and suppress the expression of aquaporin-4 and glial fibrillary acidic protein after spinal cord injury. This suggests that the mechanism by which melatonin alleviates the damage to the spinal cord by edema might be related to the expression of aquaporin-4 and glial fibrillary acidic protein.


Vibration Training Triggers Brown Adipocyte Relative Protein Expression in Rat White Adipose Tissue.

  • Chao Sun‎ et al.
  • BioMed research international‎
  • 2015‎

Recently, vibration training is considered as a novel strategy of weight loss; however, its mechanisms are still unclear. In this study, normal or high-fat diet-induced rats were trained by whole body vibration for 8 weeks. We observed that the body weight and fat metabolism index, blood glucose, triglyceride, cholesterol, and free fatty acid in obesity rats decreased significantly compared with nonvibration group (n = 6). Although intrascapular BAT weight did not change significantly, vibration enhanced ATP reduction and increased protein level of the key molecule of brown adipose tissue (BAT), PGC-1α, and UCP1 in BAT. Interestingly, the adipocytes in retroperitoneal white adipose tissue (WAT) became smaller due to vibration exercise and had higher protein level of the key molecule of brown adipose tissue (BAT), PGC-1α, and UCP1 and inflammatory relative proteins, IL-6 and TNFα. Simultaneously, ATP content and PPARγ protein level in WAT became less in rats compared with nonvibration group. The results indicated that vibration training changed lipid metabolism in rats and promoted brown fat-like change in white adipose tissues through triggering BAT associated gene expression, inflammatory reflect, and reducing energy reserve.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: