Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Unraveling the kinetic diversity of microbial 3-dehydroquinate dehydratases of shikimate pathway.

AMB Express | 2015

3-Dehydroquinate dehydratase (DHQase) catalyzes the conversion of 3-dehydroquinic acid to 3-dehydroshikimic acid of the shikimate pathway. In this study, 3180 prokaryotic genomes were examined and 459 DHQase sequences were retrieved. Based on sequence analysis and their original hosts, 38 DHQase genes were selected for chemical synthesis. The selected DHQases were translated into new DNA sequences according to the genetic codon usage bias by both Escherichia coli and Corynebacterium glutamicum. The new DNA sequences were customized for synthetic biological applications by adding Biobrick adapters at both ends and by removal of any related restriction endonuclease sites. The customized DHQase genes were successfully expressed in E. coli, and functional DHQases were obtained. Kinetic parameters of Km, kcat, and Vmax of DHQases were determined with a newly established high-throughput method for DHQase activity assay. Results showed that DHQases possessed broad strength of substrate affinities and catalytic capacities. In addition to the DHQase kinetic diversities, this study generated a DHQase library with known catalytic constants that could be applied to design artificial modules of shikimate pathway for metabolic engineering and synthetic biology.

Pubmed ID: 25852984 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


MUSCLE (tool)

RRID:SCR_011812

Multiple sequence alignment method with reduced time and space complexity.Multiple sequence alignment with high accuracy and high throughput. Data analysis service for multiple sequence comparison by log- expectation.

View all literature mentions