Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 34 papers

A Loss-of-Function HCN4 Mutation Associated With Familial Benign Myoclonic Epilepsy in Infancy Causes Increased Neuronal Excitability.

  • Giulia Campostrini‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2018‎

HCN channels are highly expressed and functionally relevant in neurons and increasing evidence demonstrates their involvement in the etiology of human epilepsies. Among HCN isoforms, HCN4 is important in cardiac tissue, where it underlies pacemaker activity. Despite being expressed also in deep structures of the brain, mutations of this channel functionally shown to be associated with epilepsy have not been reported yet. Using Next Generation Sequencing for the screening of patients with idiopathic epilepsy, we identified the p.Arg550Cys (c.1648C>T) heterozygous mutation on HCN4 in two brothers affected by benign myoclonic epilepsy of infancy. Functional characterization in heterologous expression system and in neurons showed that the mutation determines a loss of function of HCN4 contribution to activity and an increase of neuronal discharge, potentially predisposing to epilepsy. Expressed in cardiomyocytes, mutant channels activate at slightly more negative voltages than wild-type (WT), in accordance with borderline bradycardia. While HCN4 variants have been frequently associated with cardiac arrhythmias, these data represent the first experimental evidence that functional alteration of HCN4 can also be involved in human epilepsy through a loss-of-function effect and associated increased neuronal excitability. Since HCN4 appears to be highly expressed in deep brain structures only early during development, our data provide a potential explanation for a link between dysfunctional HCN4 and infantile epilepsy. These findings suggest that it may be useful to include HCN4 screening to extend the knowledge of the genetic causes of infantile epilepsies, potentially paving the way for the identification of innovative therapeutic strategies.


Analysis of vesicular monoamine transporter 2 polymorphisms in Parkinson's disease.

  • Laura Brighina‎ et al.
  • Neurobiology of aging‎
  • 2013‎

Generation of reactive oxygen species during dopamine (DA) oxidation could be one of the factors leading to the selective loss of nigral dopaminergic neurons in Parkinson's disease (PD). Vesicular monoamine transporter type 2 (VMAT2) proteins in nerve terminals uptake dopamine into synaptic vesicles, preventing its cytoplasmic accumulation and toxic damage to nigral neurons. Polymorphisms in VMAT2 gene and in its regulatory regions might therefore serve as genetic risk factors for PD. In the present study, we have analyzed 8 single-nucleotide polymorphisms (SNPs) located within/around the VMAT2 gene for association with PD in an Italian cohort composed of 704 PD patients and 678 healthy controls. Among the 8 SNPs studied, only the 2 located within the promoter region (rs363371 and rs363324) were significantly associated with PD. In the dominant model, odds ratios were 0.72 (95% confidence interval [CI]: 0.6-0.9, p < 0.005) for rs363371 and 0.76 (95% CI: 0.6-0.9, p = 0.01) for rs363324; in the additive model, odds ratios were 0.78 (95% CI: 0.65-0.94, p = 0.008) for rs363371 and 0.85 (95% CI: 0.7-20.92, p = 0.04) for rs363324. There were no significant relationships between the remaining SNPs (rs363333, rs363399, rs363387, rs363343, rs4752045, and rs363236) and the risk of sporadic PD in any genetic model. This study adds to the previous evidence suggesting that variability in VMAT2 promoter region may confer a reduced risk of developing PD, presumably via mechanisms of gene overexpression.


Founder effect and estimation of the age of the Progranulin Thr272fs mutation in 14 Italian pedigrees with frontotemporal lobar degeneration.

  • Barbara Borroni‎ et al.
  • Neurobiology of aging‎
  • 2011‎

Progranulin (PGRN) mutations have been recognized to be monogenic causes of frontotemporal lobar degeneration (FTLD). PGRN Thr272fs mutation in the Italian population has been previously identified. In the present study, we evaluated the occurrence of a founder effect studying 8 polymorphic microsatellite markers flanking the PGRN gene in 14 apparently unrelated families. We identified a common haplotype associated with PGRN Thr272fs carriers, assuming common ancestry. The inferred age analysis (range between 260 [95% credible set: 227-374] and 295 [95% credible set: 205-397] generations) places the introduction of the mutation back to the Neolithic era when the Celts, the population of that period, settled in Northern Italy. PGRN Thr272fs mutation appears to be as either behavioral frontotemporal dementia (80%) or primary progressive aphasia (20%), it was equally distributed between male and female, and the mean age at onset was 59.6 ± 5.9 (range 53-68). In 14 families, autosomal dominant pattern of inheritance was present in 64.2% of cases. No clinical predictors of disease onset were demonstrated. The identification of a large cohort of frontotemporal lobar degeneration (FTLD) patients with homogeneous genetic background well may be used in the search of disease modulators to elucidate genotype-phenotype correlations of progranulopathies.


Inhibition of retrograde transport modulates misfolded protein accumulation and clearance in motoneuron diseases.

  • Riccardo Cristofani‎ et al.
  • Autophagy‎
  • 2017‎

Motoneuron diseases, like spinal bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis (ALS), are associated with proteins that because of gene mutation or peculiar structures, acquire aberrant (misfolded) conformations toxic to cells. To prevent misfolded protein toxicity, cells activate a protein quality control (PQC) system composed of chaperones and degradative pathways (proteasome and autophagy). Inefficient activation of the PQC system results in misfolded protein accumulation that ultimately leads to neuronal cell death, while efficient macroautophagy/autophagy-mediated degradation of aggregating proteins is beneficial. The latter relies on an active retrograde transport, mediated by dynein and specific chaperones, such as the HSPB8-BAG3-HSPA8 complex. Here, using cellular models expressing aggregate-prone proteins involved in SBMA and ALS, we demonstrate that inhibition of dynein-mediated retrograde transport, which impairs the targeting to autophagy of misfolded species, does not increase their aggregation. Rather, dynein inhibition correlates with a reduced accumulation and an increased clearance of mutant ARpolyQ, SOD1, truncated TARDBP/TDP-43 and expanded polyGP C9ORF72 products. The enhanced misfolded protein clearance is mediated by the proteasome, rather than by autophagy and correlates with the upregulation of the HSPA8 cochaperone BAG1. In line, overexpression of BAG1 increases the proteasome-mediated clearance of these misfolded proteins. Our data suggest that when the misfolded proteins cannot be efficiently transported toward the perinuclear region of the cells, where they are either degraded by autophagy or stored into the aggresome, the cells activate a compensatory mechanism that relies on the induction of BAG1 to target the HSPA8-bound cargo to the proteasome in a dynein-independent manner.


Riluzole Selective Antioxidant Effects in Cell Models Expressing Amyotrophic Lateral Sclerosis Endophenotypes.

  • Gessica Sala‎ et al.
  • Clinical psychopharmacology and neuroscience : the official scientific journal of the Korean College of Neuropsychopharmacology‎
  • 2019‎

Until recently, riluzole was the only drug licensed for amyotrophic lateral sclerosis (ALS). In spite of its efficacy, the mechanism of action remains elusive, and both blocking of glutamate release and antioxidant properties have been postulated. Here we characterized human SH-SY5Y neuroblastoma cell lines, taking advantage of their insensitivity to excitotoxic insults, in order to selectively assess the presence of a direct antioxidant effect of riluzole.


Genome-wide Association and Meta-analysis of Age at Onset in Parkinson Disease: Evidence From the COURAGE-PD Consortium.

  • Sandeep Grover‎ et al.
  • Neurology‎
  • 2022‎

Considerable heterogeneity exists in the literature concerning genetic determinants of the age at onset (AAO) of Parkinson disease (PD), which could be attributed to a lack of well-powered replication cohorts. The previous largest genome-wide association studies (GWAS) identified SNCA and TMEM175 loci on chromosome (Chr) 4 with a significant influence on the AAO of PD; these have not been independently replicated. This study aims to conduct a meta-analysis of GWAS of PD AAO and validate previously observed findings in worldwide populations.


Neuropathological hints from CSF and serum biomarkers in corticobasal syndrome (CBS): a systematic review.

  • Giulia Remoli‎ et al.
  • Neurological research and practice‎
  • 2024‎

Corticobasal syndrome (CBS) is a clinical syndrome determined by various underlying neurodegenerative disorders requiring a pathological assessment for a definitive diagnosis. A literature review was performed following the methodology described in the Cochrane Handbook for Systematic Reviews to investigate the additional value of traditional and cutting-edge cerebrospinal fluid (CSF) and serum/plasma biomarkers in profiling CBS. Four databases were screened applying predefined inclusion criteria: (1) recruiting patients with CBS; (2) analyzing CSF/plasma biomarkers in CBS. The review highlights the potential role of the association of fluid biomarkers in diagnostic workup of CBS, since they may contribute to a more accurate diagnosis and patient selection for future disease-modifying agent; for example, future trial designs should consider baseline CSF Neurofilament Light Chains (NfL) or progranulin dosage to stratify treatment arms according to neuropathological substrates, and serum NfL dosage might be used to monitor the evolution of CBS. In this scenario, prospective cohort studies, starting with neurological examination and neuropsychological tests, should be considered to assess the correlations of clinical profiles and various biomarkers.


Glibenclamide-Loaded Engineered Nanovectors (GNVs) Modulate Autophagy and NLRP3-Inflammasome Activation.

  • Marina Saresella‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2023‎

Activation of the NLRP3 inflammasome in response to either exogenous (PAMPs) or endogenous (DAMPs) stimuli results in the production of IL-18, caspase-1 and IL-1β. These cytokines have a beneficial role in promoting inflammation, but an excessive activation of the inflammasome and the consequent constitutive inflammatory status plays a role in human pathologies, including Alzheimer's disease (AD). Autophagic removal of NLRP3 inflammasome activators can reduce inflammasome activation and inflammation. Likewise, inflammasome signaling pathways regulate autophagy, allowing the development of inflammatory responses but preventing excessive and detrimental inflammation. Nanotechnology led to the development of liposome engineered nanovectors (NVs) that can load and carry drugs. We verified in an in vitro model of AD-associated inflammation the ability of Glibenclamide-loaded NVs (GNVs) to modulate the balance between inflammasome activation and autophagy. Human THP1dM cells were LPS-primed and oligomeric Aß-stimulated in the presence/absence of GNVs. IL-1β, IL-18 and activated caspase-1 production was evaluated by the Automated Immunoassay System (ELLA); ASC speck formation (a marker of NLRP3 activation) was analyzed by FlowSight Imaging flow-cytometer (AMNIS); the expression of autophagy targets was investigated by RT-PCR and Western blot (WB); and the modulation of autophagy-related up-stream signaling pathways and Tau phosphorylation were WB-quantified. Results showed that GNVs reduce activation of the NLRP3 inflammasome and prevent the Aß-induced phosphorylation of ERK, AKT, and p70S6 kinases, potentiating autophagic flux and counteracting Tau phosphorylation. These preliminary results support the investigation of GNVs as a possible novel strategy in disease and rehabilitation to reduce inflammasome-associated inflammation.


Valproate Treatment in an ALS Patient Carrying a c.194G>A Spastin Mutation and SMN2 Homozygous Deletion.

  • Lucio Tremolizzo‎ et al.
  • Case reports in neurological medicine‎
  • 2014‎

Here we report the case of an ALS patient found to carry both a novel heterozygous change (c.194G>A) within the spastin gene and a homozygous deletion of the SMN2 gene. The patient was started on valproic acid (VPA, 600 mg/die per os) considering the capacity of this drug of increasing survival motor neuron through an epigenetic mechanism. Patient clinical course and molecular effects of VPA on skin fibroblasts obtained from the proband are described. This c.194G>A spastin mutation might expand the previously known borders of type 4 spastic paraplegia (SPG4) and we suggest the intriguing possibility that the absence of SMN2 might have acted as a contributory risk factor for starting lower motor neuron damage. Exploring the relationship genocopy-phenocopy in selected ALS patients might represent an interesting strategy for understanding its clinical variability.


Brand new norms for a good old test: Northern Italy normative study of MiniMental State Examination.

  • Giuseppe Foderaro‎ et al.
  • Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology‎
  • 2022‎

Mini-Mental State Examination (MMSE) is one of the most used tests for the screening of global cognition in patients with neurological and medical disorders. Norms for the Italian version of the test were published in the 90 s; more recent norms were published in 2020 for Southern Italy only. In the present study, we computed novel adjustment coefficients, equivalent scores and cut-off value for Northern Italy (Lombardia and Veneto) and Italian speaking Switzerland.


Multicentre translational Trial of Remote Ischaemic Conditioning in Acute Ischaemic Stroke (TRICS): protocol of multicentre, parallel group, randomised, preclinical trial in female and male rat and mouse from the Italian Stroke Organization (ISO) Basic Science network.

  • Mauro Tettamanti‎ et al.
  • BMJ open science‎
  • 2020‎

Multicentre preclinical randomised controlled trials (pRCT) are emerging as a necessary step to confirm efficacy and improve translation into the clinic. The aim of this project is to perform two multicentre pRCTs (one in rats and one in mice) to investigate the efficacy of remote ischaemic conditioning (RIC) in an experimental model of severe ischaemic stroke.


Neurological soft signs are increased in migraine without aura: relationship with the affective status.

  • Lucio Tremolizzo‎ et al.
  • Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology‎
  • 2022‎

Neurological soft signs (NSS) are subtle non-localizing sensorimotor abnormalities initially reported as increased in primary headache patients. The aims of this study were confirming with full power NSS increased expression in migraine and, collaterally, determining if psychiatric traits or white matter lesions at brain imaging could influence this result.


Cerebral collateral therapeutics in acute ischemic stroke: A randomized preclinical trial of four modulation strategies.

  • Simone Beretta‎ et al.
  • Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism‎
  • 2017‎

Cerebral collaterals are dynamically recruited after arterial occlusion and highly affect tissue outcome in acute ischemic stroke. We investigated the efficacy and safety of four pathophysiologically distinct strategies for acute modulation of collateral flow (collateral therapeutics) in the rat stroke model of transient middle cerebral artery (MCA) occlusion. A composed randomization design was used to assign rats (n = 118) to receive phenylephrine (induced hypertension), polygeline (intravascular volume load), acetazolamide (cerebral arteriolar vasodilation), head down tilt (HDT) 15° (cerebral blood flow diversion), or no treatment, starting 30 min after MCA occlusion. Compared to untreated animals, treatment with collateral therapeutics was associated with lower infarct volumes (62% relative mean difference; 51.57 mm3 absolute mean difference; p < 0.001) and higher chance of good functional outcome (OR 4.58, p < 0.001). Collateral therapeutics acutely increased cerebral perfusion in the medial (+40.8%; p < 0.001) and lateral (+19.2%; p = 0.016) MCA territory compared to pretreatment during MCA occlusion. Safety indicators were treatment-related mortality and cardiorespiratory effects. The highest efficacy and safety profile was observed for HDT. Our findings suggest that acute modulation of cerebral collaterals is feasible and provides a tissue-saving effect in the hyperacute phase of ischemic stroke prior to recanalization therapy.


Rotenone upregulates alpha-synuclein and myocyte enhancer factor 2D independently from lysosomal degradation inhibition.

  • Gessica Sala‎ et al.
  • BioMed research international‎
  • 2013‎

Dysfunctions of chaperone-mediated autophagy (CMA), the main catabolic pathway for alpha-synuclein, have been linked to the pathogenesis of Parkinson's disease (PD). Since till now there is limited information on how PD-related toxins may affect CMA, in this study we explored the effect of mitochondrial complex I inhibitor rotenone on CMA substrates, alpha-synuclein and MEF2D, and effectors, lamp2A and hsc70, in a human dopaminergic neuroblastoma SH-SY5Y cell line. Rotenone induced an upregulation of alpha-synuclein and MEF2D protein levels through the stimulation of their de novo synthesis rather than through a reduction of their CMA-mediated degradation. Moreover, increased MEF2D transcription resulted in higher nuclear protein levels that exert a protective role against mitochondrial dysfunction and oxidative stress. These results were compared with those obtained after lysosome inhibition with ammonium chloride. As expected, this toxin induced the cytosolic accumulation of both alpha-synuclein and MEF2D proteins, as the result of the inhibition of their lysosome-mediated degradation, while, differently from rotenone, ammonium chloride decreased MEF2D nuclear levels through the downregulation of its transcription, thus reducing its protective function. These results highlight that rotenone affects alpha-synuclein and MEF2D protein levels through a mechanism independent from lysosomal degradation inhibition.


Direct current stimulation enhances neuronal alpha-synuclein degradation in vitro.

  • Gessica Sala‎ et al.
  • Scientific reports‎
  • 2021‎

Despite transcranial Direct Current Stimulation (DCS) is currently proposed as a symptomatic treatment in Parkinson's disease, the intracellular and molecular mechanisms elicited by this technique are still unknown, and its disease-modifying potential unexplored. Aim of this study was to elucidate the on-line and off-line effects of DCS on the expression, aggregation and degradation of alpha-synuclein (asyn) in a human neuroblastoma cell line under basal conditions and in presence of pharmachologically-induced increased asyn levels. Following DCS, gene and protein expression of asyn and its main autophagic catabolic pathways were assessed by real-time PCR and Western blot, extracellular asyn levels by Dot blot. We found that, under standard conditions, DCS increased monomeric and reduced oligomeric asyn forms, with a concomitant down-regulation of both macroautophagy and chaperone-mediated autophagy. Differently, in presence of rotenone-induced increased asyn, DCS efficiently counteracted asyn accumulation, not acting on its gene transcription, but potentiating its degradation. DCS also reduced intracellular and extracellular asyn levels, increased following lysosomal inhibition, independently from autophagic degradation, suggesting that other mechanisms are also involved. Collectively, these findings suggest that DCS exerts on-line and off-line effects on the expression, aggregation and autophagic degradation of asyn, indicating a till unknown neuroprotective role of tDCS.


Alzheimer's Disease Prevention through Natural Compounds: Cell-Free, In Vitro, and In Vivo Dissection of Hop (Humulus lupulus L.) Multitarget Activity.

  • Alessandro Palmioli‎ et al.
  • ACS chemical neuroscience‎
  • 2022‎

The relevant social and economic costs associated with aging and neurodegenerative diseases, particularly Alzheimer's disease (AD), entail considerable efforts to develop effective preventive and therapeutic strategies. The search for natural compounds, whose intake through diet can help prevent the main biochemical mechanisms responsible for AD onset, led us to screen hops, one of the main ingredients of beer. To explore the chemical variability of hops, we characterized four hop varieties, i.e., Cascade, Saaz, Tettnang, and Summit. We investigated the potential multitarget hop activity, in particular its ability to hinder Aβ1-42 peptide aggregation and cytotoxicity, its antioxidant properties, and its ability to enhance autophagy, promoting the clearance of misfolded and aggregated proteins in a human neuroblastoma SH-SY5Y cell line. Moreover, we provided evidence of in vivo hop efficacy using the transgenic CL2006Caenorhabditis elegans strain expressing the Aβ3-42 peptide. By combining cell-free and in vitro assays with nuclear magnetic resonance (NMR) and MS-based metabolomics, NMR molecular recognition studies, and atomic force microscopy, we identified feruloyl and p-coumaroylquinic acids flavan-3-ol glycosides and procyanidins as the main anti-Aβ components of hop.


Being the Family Caregiver of a Patient With Dementia During the Coronavirus Disease 2019 Lockdown.

  • Milena Zucca‎ et al.
  • Frontiers in aging neuroscience‎
  • 2021‎

Background: Family caregivers of patients with dementia are at high risk of stress and burden, and quarantine due to the coronavirus disease 2019 (COVID-19) pandemic may have increased the risk of psychological disturbances in this population. The current study was carried out during the national lockdown declared in March 2020 by the Italian government as a containment measure of the first wave of the coronavirus pandemic and is the first nationwide survey on the impact of COVID-19 lockdown on the mental health of dementia informal caregivers. Methods: Eighty-seven dementia centers evenly distributed on the Italian territory enrolled 4,710 caregiver-patient pairs. Caregivers underwent a telephone interview assessing classical symptoms of caregiver stress and concern for the consequences of COVID-19 infection on patient's health. We calculated prevalence of symptoms and regressed them on various potential stress risk factors: caregivers' sociodemographic characteristics and lifestyle, patients' clinical features, and lockdown-related elements, like discontinuity in medical care. Results: Approximately 90% of caregivers reported at least one symptom of stress, and nearly 30% reported four or more symptoms. The most prevalent symptoms were concern for consequences of COVID-19 on patient's health (75%) and anxiety (46%). The main risk factors for stress were identified as a conflicting relationship with the patient and discontinuity in assistance, but caregiver's female sex, younger age, lower education, and cohabitation with the patient also had an impact. Availability of help from institutions or private individuals showed a protective effect against sense of abandonment but a detrimental effect on concern about the risk for the patient to contract COVID-19. The only protective factor was mild dementia severity, which was associated with a lower risk of feeling isolated and abandoned; type of dementia, on the other hand, did not affect stress risk. Conclusion: Our results demonstrate the large prevalence of stress in family caregivers of patients with dementia during the COVID-19 pandemic and have identified both caregivers and situations at a higher risk of stress, which should be taken into account in the planning of interventions in support of quarantined families and patients.


Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis.

  • Janel O Johnson‎ et al.
  • JAMA neurology‎
  • 2021‎

Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation.


Validity of cingulate-precuneus-temporo-parietal hypometabolism for single-subject diagnosis of biomarker-proven atypical variants of Alzheimer's Disease.

  • Valeria Isella‎ et al.
  • Journal of neurology‎
  • 2022‎

The aim of our study was to establish empirically to what extent reduced glucose uptake in the precuneus, posterior cingulate and/or temporo-parietal cortex (PCTP), which is thought to indicate brain amyloidosis in patients with dementia or MCI due to Alzheimer's Disease (AD), permits to distinguish amyloid-positive from amyloid-negative patients with non-classical AD phenotypes at the single-case level. We enrolled 127 neurodegenerative patients with cognitive impairment and a positive (n. 63) or negative (n. 64) amyloid marker (cerebrospinal fluid or amy-PET). Three rating methods of FDG-PET scan were applied: purely qualitative visual interpretation of uptake images (VIUI), and visual reading assisted by a semi-automated and semi-quantitative tool: INLAB, provided by the Italian National Research Council, or Cortex ID Suite, marketed by GE Healthcare. Fourteen scans (11.0%) patients remained unclassified by VIUI or INLAB procedures, therefore, validity values were computed on the remaining 113 cases. The three rating approaches showed good total accuracy (77-78%), good to optimal sensitivity (81-93%), but poorer specificity (62-75%). VIUI showed the highest sensitivity and the lowest specificity, and also the highest proportion of unclassified cases. Cases with asymmetric temporo-parietal hypometabolism and a progressive aphasia or corticobasal clinical profile, in particular, tended to be rated as AD-like, even if biomarkers indicated non-amyloid pathology. Our findings provide formal support to the value of PCTP hypometabolism for single-level diagnosis of amyloid pathophysiology in atypical AD, but also highlight the risk of qualitative assessment to misclassify patients with non-AD PPA or CBS underpinned by asymmetric temporo-parietal hypometabolism.


Multifunctional liposomes interact with Abeta in human biological fluids: Therapeutic implications for Alzheimer's disease.

  • Elisa Conti‎ et al.
  • Neurochemistry international‎
  • 2017‎

The accumulation of extracellular amyloid beta (Abeta42) both in brain and in cerebral vessels characterizes Alzheimer's disease (AD) pathogenesis. Recently, the possibility to functionalize nanoparticles (NPs) surface with Abeta42 binding molecules, making them suitable tools for reducing Abeta42 burden has been shown effective in models of AD. Aim of this work consisted in proving that NPs might be effective in sequestering Abeta42 in biological fluids, such as CSF and plasma. This demonstration is extremely important considering that these Abeta42 pools are in continuum with the brain parenchyma with drainage of Abeta from interstitial brain tissue to blood vessel and plasma. In this work, liposomes (LIP) were functionalized as previously shown in order to promote high-affinity Abeta binding, i.e., either with, phosphatidic acid (PA), or a modified Apolipoprotein E-derived peptide (mApo), or with a curcumin derivative (TREG); Abeta42 levels were determined by ELISA in CSF and plasma samples. mApo-PA-LIP (25 and 250 μM) mildly albeit significantly sequestered Abeta42 proteins in CSF samples obtained from healthy subjects (p < 0.01). Analogously a significant binding (∼20%) of Abeta42 (p < 0.001) was demonstrated following exposure to all functionalized liposomes in plasma samples obtained from selected AD or Down's syndrome patients expressing high levels of Abeta42. The same results were obtained by quantifying Abeta42 content after removal of liposome-bound Abeta by using gel filtration chromatography or ultracentrifugation on a discontinuous sucrose density gradient. In conclusion, we demonstrate that functionalized liposomes significantly sequester Abeta42 in human biological fluids. These data may be critical for future in vivo administration tests using NPs for promoting sink effect.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: