Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Fear renewal activates cyclic adenosine monophosphate signaling in the dentate gyrus.

  • Yan-Wei Shi‎ et al.
  • Brain and behavior‎
  • 2019‎

Fear renewal, the context-specific relapse of a conditioned fear after extinction, is a widely pursued model of post-traumatic stress disorder and phobias. However, its cellular and molecular mechanisms remain poorly understood. The dentate gyrus (DG) has emerged as a critical locus of plasticity with relevance to memory, anxiety disorders, and depression, and it contributes to fear memory retrieval. Here, we have identified the role of the DG in fear renewal and its molecular mechanism.


Regulation of Fear Extinction in the Basolateral Amygdala by Dopamine D2 Receptors Accompanied by Altered GluR1, GluR1-Ser845 and NR2B Levels.

  • Yan-Wei Shi‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2017‎

The amygdala, a critical structure for both Pavlovian fear conditioning and fear extinction, receives sparse but comprehensive dopamine innervation and contains dopamine D1 and D2 receptors. Fear extinction, which involves learning to suppress the expression of a previously learned fear, appears to require the dopaminergic system. The specific roles of D2 receptors in mediating associative learning underlying fear extinction require further study. Intra-basolateral amygdala (BLA) infusions of a D2 receptor agonist, quinpirole, and a D2 receptor antagonist, sulpiride, prior to fear extinction and extinction retention were tested 24 h after fear extinction training for long-term memory (LTM). LTM was facilitated by quinpirole and attenuated by sulpiride. In addition, A-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor glutamate receptor 1 (GluR1) subunit, GluR1 phospho-Ser845, and N-methyl-D-aspartic acid receptor NR2B subunit levels in the BLA were generally increased by quinpirole and down-regulated by sulpiride. The present study suggests that activation of D2 receptors facilitates fear extinction and that blockade of D2 receptors impairs fear extinction, accompanied by changes in GluR1, GluR1-Ser845 and NR2B levels in the amygdala.


mGluR5 in amygdala modulates fear memory generalization.

  • Shou-Min Xuan‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2023‎

Fear memory generalization is regarded as the core characteristic of posttraumatic stress disorder (PTSD) development. However, the mechanism that contributes to the generalization of conditioned fear memory is still unclear. The generalization is generally considered to be a mismatch that occurs during memory consolidation.


Deficiency of Tet3 in nucleus accumbens enhances fear generalization and anxiety-like behaviors in mice.

  • Bu-Fang Fan‎ et al.
  • Brain pathology (Zurich, Switzerland)‎
  • 2022‎

Stress-induced neuroepigenetic programming gains growing more and more interest in the studies of the etiology of posttraumatic stress disorder (PTSD). However, seldom attention is focused on DNA demethylation in fear memory generalization, which is the core characteristic of PTSD. Here, we show that ten-eleven translocation protein 3 (TET3), the most abundant DNA demethylation enzyme of the TET family in neurons, senses environmental stress and bridges neuroplasticity with behavioral adaptation during fear generalization. Foot shock strength dependently induces fear generalization and TET3 expression in nucleus accumbens (NAc) in mice. Inhibition of DNA demethylation by infusing demethyltransferase inhibitors or AAV-Tet3-shRNA virus in NAc enhances the fear generalization and anxiety-like behavior. Furthermore, TET3 knockdown impairs the dendritic spine density, PSD length, and thickness of neurons, decreases DNA hydroxymethylation (5hmC), reduces the expression of synaptic plasticity-related genes including Homer1, Cdkn1a, Cdh8, Vamp8, Reln, Bdnf, while surprisingly increases immune-related genes Stat1, B2m, H2-Q7, H2-M2, C3, Cd68 shown by RNA-seq. Notably, knockdown of TET3 in NAc activates microglia and CD39-P2Y12R signaling pathway, and inhibition of CD39 reverses the effects of TET3 knockdown on the fear memory generalization and anxiety. Overexpression of TET3 by Crispr-dSaCas9 virus delivery to activate endogenous Tet3 in NAc increases dendritic spine density of neurons in NAc and reverses fear memory generalization and anxiety-like behavior in mice. These results suggest that TET3 modulates fear generalization and anxiety via regulating synaptic plasticity and CD39 signaling pathway.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: