Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Ursodeoxycholic acid inhibits ENaC and Na/K pump activity to restore airway surface liquid height in cystic fibrosis bronchial epithelial cells.

  • Magdalena S Mroz‎ et al.
  • Steroids‎
  • 2019‎

Cystic fibrosis (CF) is a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) that in the airways result in reduced Cl- secretion and increased Na+ absorption, airway surface liquid (ASL) dehydration, decreased mucociliary clearance, infection and inflammation leading to lung injury. Cystic fibrosis patients often present with bile acids in the lower airways, however the effects of bile acids on ASL and ion transport in CF airways are not known. Secondary bile acids, such as ursodeoxycholic acid (UDCA), have been shown to modulate immune responses and epithelial ion transport. Here we investigated the effects of UDCA in normal and CF airway epithelial cell models. NuLi-1 (normal genotype) and CuFi-1 (CF genotype, Δ508/Δ508) primary immortalized airway epithelial cells were grown under an air-liquid interface. Electrogenic transepithelial ion transport was measured by short-circuit current (Isc) across cell monolayers mounted in Ussing chambers. We observed that UDCA (500 μM, 60 min, bilateral) decreased the basal Isc and ENaC currents in both NuLi-1 and CuFi-1 cells. UDCA inhibited the amiloride-sensitive ENaC current by 44% in NulI-1 monolayers and by 30% in CuFi-1 cells. Interestingly, UDCA also inhibited currents through the basolateral Na/K pump in both Nuli-1 and CuFi-1 monolayers without alterting the expression of ENaC or Na+/K+-ATPase proteins. The airway surface liquid height is regulated by transpeithelial Na+ absorption (ENaC) and Cl- secretion (CFTR) in normal airway but mainly by ENaC activity in CF epithelia when Cl- secretion is compromised by CFTR mutations. UDCA increased ASL height by 50% in Nuli-1 and by 40% in CUFI-1 monolayers. In conclusion, we demonstrate a previously unknown effect of UDCA to inhibit ENaC activity and increase ASL height in normal and CF human airway epithelial cells suggesting a therapeutic potential for UDCA in CF lung disease.


Protein kinase D2 regulates epithelial sodium channel activity and aldosterone non-genomic responses in renal cortical collecting duct cells.

  • Warren Thomas‎ et al.
  • Steroids‎
  • 2020‎

Protein kinase D2 (PKD2) is a serine/threonine protein kinase which plays an important role in vesicle fission at the trans-Golgi network (TGN) to coordinate subcellular trafficking with gene expression. We found that in the rat kidney, PKD2 is specifically expressed in collecting duct principal cells predominantly at the apical membrane and with lower basal expression in cytosolic compartments. When rats were maintained on a Na+ depleted diet (<0.87 mmol Na+/kg) to increase plasma aldosterone levels, PKD2 became internalized to a cytoplasmic compartment. Treatment of murine M1 cortical collecting duct (M1-CCD) cells with aldosterone (10 nM) promoted PKD2 co-localization with the trans-Golgi network within 30 min. PKD2 underwent autophosphorylation at Ser876 within 10 min of aldosterone treatment and remained phosphorylated (active) for at least 24 h. A stable PKD2 shRNA knock-down (PKD2 KD) M1-CCD cell line was developed to study the role of PKD2 in epithelial Na+ channel (ENaC) trafficking and transepithelial Na+ transport (SCC) in epithelial monolayers grown in Ussing chambers. The PKD2 KD cells developed transepithelial resistance with kinetics equivalent to wild-type cells, however the transepithelial voltage and Na+ current were significantly elevated in PKD2 knock-down CCD epithelia. The higher basal SCC was due to increased ENaC activity. Aldosterone treatment for 24 h resulted in a decline in ENaC activity in the PKD2 KD cells as opposed to the increase observed in the wild-type cells. The paradoxical inhibition of SCC by aldosterone in PKD2 KD epithelium was attributed to a reduction in ENaC current and lower membrane abundance of ENaC, demonstrating that PKD2 plays a critical tonic role in ENaC trafficking and channel subunit stability. The rapid activation of PKD2 by aldosterone is synergistic with the transcriptional activity of MR and contributes to increased ENaC activity.


Rapid effects of 17beta-estradiol on TRPV5 epithelial Ca2+ channels in rat renal cells.

  • Mustapha Irnaten‎ et al.
  • Steroids‎
  • 2009‎

The renal distal tubules and collecting ducts play a key role in the control of electrolyte and fluid homeostasis. The discovery of highly calcium selective channels, Transient Receptor Potential Vanilloid 5 (TRPV5) of the TRP superfamily, has clarified the nature of the calcium entry channels. It has been proposed that this channel mediates the critical Ca(2+) entry step in transcellular Ca(2+) re-absorption in the kidney. The regulation of transmembrane Ca(2+) flux through TRPV5 is of particular importance for whole body calcium homeostasis.In this study, we provide evidence that the TRPV5 channel is present in rat cortical collecting duct (RCCD(2)) cells at mRNA and protein levels. We demonstrate that 17beta-estradiol (E(2)) is involved in the regulation of Ca(2+) influx in these cells via the epithelial Ca(2+) channels TRPV5. By combining whole-cell patch-clamp and Ca(2+)-imaging techniques, we have characterized the electrophysiological properties of the TRPV5 channel and showed that treatment with 20-50nM E(2) rapidly (<5min) induced a transient increase in inward whole-cell currents and intracellular Ca(2+) via TRPV5 channels. This rise was significantly prevented when cells were pre-treated with ruthenium red and completely abolished in cells treated with siRNA specifically targeting TRPV5.These data demonstrate for the first time, a novel rapid modulation of endogenously expressed TRPV5 channels by E(2) in kidney cells. Furthermore, the results suggest calcitropic effects of E(2). The results are discussed in relation to present concepts of non-genomic actions of E(2) in Ca(2+) homeostasis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: